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Abstract

Frailty, a geriatric syndrome marked by reduced physiological reserves, shares
significant biological and pathological mechanisms with psychiatric disorders such
as depression, anxiety, and sleep disorders, yet their shared genetic underpinnings
remain poorly understood. This study aimed to elucidate the genetic correlations and
pleiotropic mechanisms linking frailty with these psychiatric conditions by leveraging
genome-wide association study (GWAS) summary statistics and advanced cross-

trait pleiotropy analyses. A total of 748 pleiotropic single-nucleotide polymorphisms
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(SNPs) were identified, with 36 loci confirmed as dominant risk factors and 20
validated through causal co-localization analysis. Gene-level analyses pinpointed
key pleiotropic genes (e.g., TTC12, TMOD2, and AMT), and pathway enrichment
analyses revealed significant involvement of synaptic plasticity, arginine metabolism,
and complement24 dependent cytotoxicity regulation. Tissue-specific enrichment
highlighted the hypothalamus, frontal cortex, and pituitary as critical sites, while
immune co26 localization analyses implicated B cells, dendritic cells, and myeloid
subsets in disease mediation. These findings underscore the shared genetic and
immune regulatory mechanisms underlying frailty and psychiatric disorders,
providing novel insights into their interconnected pathophysiology and identifying
potential therapeutic targets. This study not only bridges critical gaps in the
understanding of these conditions but also offers a foundation for precision medicine

strategies to improve clinical outcomes in aging populations.
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Introduction

Frailty, a prevalent geriatric syndrome, is characterized by diminished physiological reserve and
reduced resilience to external stress, resulting in a comprehensive decline in physical fithess, mobility,
and overall health. Its pathological basis lies in the disruption of multi-system homeostasis, including
dysfunction of the nervous, endocrine-metabolic, and immune systems!. Psychiatric disorders,
characterized by disturbances in cognition, emotional regulation, and behavior, often lead to significant
personal distress and impaired daily functioning?. Notably, both frailty and psychiatric disorders are
strongly associated with chronic systemic low-grade inflammation, a phenomenon termed
“‘inflammaging” in elderly populations®-®. Elevated levels of C reactive protein (CRP) and pro-
inflammatory cytokines such as IL-6 and TNF-a not only contribute to the onset of psychiatric disorders
but also accelerate frailty progression*’. Sustained activation of these inflammatory cytokines can
induce neuroinflammation, impair central nervous system function, and exacerbate psychiatric
symptoms. Additionally, overactivation of the hypothalamic-pituitary-adrenal (HPA) axis leads to
elevated cortisol levels, which inhibit neurogenesis and promote symptoms of anxiety and depression?.
Meanwhile, dysfunction of neurotransmitter systems, exacerbated by neuronal impairment, further
accelerates the progression of frailty. Collectively, these findings underscore the existence of shared
biological mechanisms between frailty and psychiatric disorders, highlighting their interconnected
pathophysiological processes.

Epidemiological studies strongly support the association between frailty and various psychiatric
disorders. For instance, compared to the healthy population, frail individuals face approximately 1.5
times higher risk of sleep disorders, a threefold increase in the risk of major depressive disorder, and
a 2.5-fold increase in the incidence of anxiety. Among hospitalized elderly patients with psychiatric

disorders, frailty prevalence reaches as high as 52.5% to 59.2%°. Assessments using the Pittsburgh
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Sleep Index have revealed significantly higher rates of sleep disorders in the pre-frailty and frailty
groups (37% and 37.6%, respectively) compared to the control group°. Multivariate logistic regression
analysis further confirms that poor sleep quality is an independent risk factor for frailty*l. While prior
studies have identified associations between frailty and individual psychiatric disorders, they primarily
focus on observational evidence and lack systematic investigation into the pleiotropic mechanisms
underlying multiple psychiatric disorders and frailty. For example, research by Atkins et al. suggests
that the shared mechanisms between depression and frailty may involve genetic functions within the
prefrontal cortex and hippocampus!2. However, the genetic basis of frailty remains incompletely
understood, with heritability estimates ranging between 30% and 45%13. Candidate gene association
studies have implicated genes such as IL-18 in frailty-related inflammatory pathways'4. Given these
significant knowledge gaps, there is an urgent need for comprehensive exploration of shared genetic
risk loci to better understand the common biological mechanisms linking frailty and psychiatric
disorders.
In recent years, methods such as high-resolution likelihood (HDL) and linkage disequilibrium score
regression (LDSC) based on aggregated GWAS data have been developed to uncover genetic
correlations between diseases®>*6. However, it remains unclear whether these correlations arise from
effects at specific loci or across the entire genome. Cross-trait analyses have proven effective in
identifying shared loci between diseases, which can serve as potential therapeutic targets and offer
novel insights into disease prevention and treatment!’-1°. Utilizing the newly developed pleiotropy
analysis method (PLACO) under the composite null hypothesis?, this study aims to identify pleiotropic
genetic loci at the SNP level and provide a deeper understanding of the shared genetic mechanisms

underlying complex diseases. Our research flowchart is shown in Fig. 1.
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Methods

GWAS summary data source

The GWAS summary statistics for the three psychiatric disorders analyzed in this study were obtained
from publicly available large-scale GWAS databases?!. Frailty GWAS data (GWAS ID: ebi-a-
GCST90020053) were derived from two meta-analyses: the UK Biobank cohort of European ancestry
(n =164,610) and the Swedish TwinGene study (n = 10,616)2. A standardized quality control protocol
was applied across all datasets, assessing the association between frailty and SNP genotypes using
logistic regression analysis. Risk estimates were subsequently combined through meta-analysis using
the ixed-effects inverse variance weighting (IVW) method?2. Data for all three mental disorders were
obtained from the FinnGen R11 database (GWAS ID for depressive disorder:
finngen_R11 F5 DEPRESSIO, GWAS ID for anxiety disorder:

finngen_R11 F5 ALLANXIOUS, GWAS ID for sleep disorders:

finngen_R11_SLEEP)?'. The sources and details of these datasets are summarized in 114 Additional
file 2: Table S1.

Quiality control

To ensure data accuracy and reliability, rigorous quality control measures were applied. First, SNPs
within the major histocompatibility complex (MHC) region, spanning the 25 Mb to 35 Mb interval on
chromosome 6, were excluded from the analysis?3. Due to its highly complex gene structure and
extensive linkage disequilibrium, this region is prone to false-positive results and is typically excluded
in GWAS studies. Second, to minimize the impact of rare variations, a minor allele frequency (MAF)
threshold was set at >0.01, retaining only SNPs with a minor allele frequency greater than 1%. This
filtering step ensures a focus on common variants, thereby improving statistical power and reducing
the likelihood of false positives. Additionally, checks for sample and marker quality were performed.
For samples, a call rate threshold of >95% was applied, while for markers, a stricter call rate threshold
of >99% was enforced. Samples and markers failing to meet these criteria were excluded to maintain

data integrity and ensure the robustness of the analysis.

Genomic wide genetic association analysis

To investigate the shared genetic framework between psychiatric disorders and frailty, linkage LDSC
was utilized?®. The linkage disequilibrium (LD) scores for this analysis were derived from common SNP
genotypes of European ancestry samples provided by the 1000 Genomes Project?*. The standard error
(SE) was estimated using the leave one-out method, which was then applied to adjust for attenuation
bias. Furthermore, the LDSC intercept was employed to assess potential population overlap among
the datasets®®. Notably, our analysis confirmed no population overlap between the datasets for
psychiatric disorders and frailty, thereby enhancing the reliability of the results.To further validate the
findings from LDSC, we utilized HDL, a likelihood-based analytical tool. HDL leverages GWAS
summary statistics more effectively than LDSC, reducing the variance in genetic association estimates

by approximately 60%. This results in significantly improved accuracy and robustness®. By cross-
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validating the LDSC results with HDL, we ensured the reliability and robustness of the genetic overlap

analysis.

Recognition of pleiotropy loci

In this study, we employed the PLACO method to systematically identify genetic associations between
frailty and three types of psychiatric disorders at the SNP level. PLACO is a statistical approach
specifically designed to detect gene pleiotropy, enabling the identification of shared genetic variants
across multiple phenotypes. Using this method, we effectively identified SNPs that demonstrate
significant associations with multiple diseases?>.

SNPs reaching genome-wide significance (P < 5 x 107%) were classified as pleiotropic variants,
indicating their strong genetic associations with multiple phenotypes and their potential role in the
pathogenesis of these conditions. Identifying such pleiotropic variants is crucial for uncovering the
shared genetic basis between psychiatric disorders and frailty. To further validate the biological
significance of these pleiotropic SNPs, we utilized the Functional Mapping and Annotation (FUMA) tool,
which enables mapping of risk variants to specific genomic regions (i.e., risk loci), providing deeper
insights into their potential functions. Additionally, Bayesian co-localization analysis was performed to

identify loci shared by frailty and psychiatric disorders2.

Tissue-specific enrichment analysis

To investigate the genetic associations between frailty and psychiatric disorders across different
tissues and organs, this study analyzed the enrichment of SNP heritability in specific cell and tissue
types. Stratified-LDSC (S-LDSC) was employed to evaluate GWAS summary statistics for various
tissues and organs, identifying the genetic enrichment significance of specific traits. Expression data
for 54 human tissues were obtained from the GTEx database and analyzed using the S-LDSC method
to assess SNP heritability enrichment levels for each tissue and cell type?’. These steps ensured both
the accuracy and robustness of the analysis. Ultimately, this study aims to uncover potential shared

genetic mechanisms underlying frailty and psychiatric disorders.

Gene level pleiotropy analysis

To explore the mechanisms underlying the identified loci, nearby genes were mapped based on the
dominant SNPs within each locus. The Generalized Gene Set Analysis (MAGMA) method was applied
to evaluate the multi-trait effects of GWAS data and determine the biological roles of these pleiotropic
gene loci. Specifically, MAGMA gene analysis identified pleiotropic genes by incorporating LD between
SNPs and detecting multi-trait effects (P < 0.05/18,345 = 2.73 x 107%)?8, Additionally, MAGMA gene
cluster analysis was performed to investigate the biological roles of dominant SNPs28. Gene sets from
the Molecular Signatures Database (MSigDB), including curated gene sets (c2.all) and Gene Ontology
categories (c5.bp, c5.cc, and c¢5.mf), were analyzed. To reduce the likelihood of false positives,
Bonferroni correction was applied to all gene sets (P < 0.05/10,678 = 4.68 x 107%)%°,

Pathway enrichment analysis was conducted using the Metascape web tool (metascape.org) to identify
the functions of the mapped genes based on the MSigDB database®°. Additionally, genome-wide

tissue-specific enrichment analysis was performed on pleiotropic results obtained from PLACO,
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utilizing expression data from 54 GTEX tissues. For this analysis, the average expression levels of all
identified pleiotropic genes were log2-transformed across the 54 GTEXx tissues. Tissue-specific tests
were then carried out using differential expression genes (DEGS) in each tissue, with upregulated and

downregulated DEGs pre-classified based on the direction of the t-statistic.

Exploration of drug targets in European populations

The Mendelian randomization (SMR) method, utilizing summary-level data, combines GWAS summary
statistics with expression quantitative trait loci (eQTL) data to uncover gene expression levels
associated with complex traits via pleiotropy3!. eQTL represents genetic variants that impact gene
expression levels, helping to explain individual differences in gene expression. By examining the
relationship between specific SNPs and gene expression levels, eQTL studies can identify genetic
variations that influence gene expression.

The SMR framework integrates eQTL data with GWAS data to investigate the potential mechanisms
through which SNPs affect complex traits, including diseases. Using the SMR and HEterogeneity in
Dependent Instrument (HEIDI) methods, pleiotropic associations between gene expression and
complex traits are evaluated. The primary objective of SMR analysis is to assess whether the impact
of an SNP on a phenotype is mediated by alterations in gene expression. If an SNP is linked to both
gene expression and complex traits, this suggests pleiotropy, indicating that the gene may play a pivotal
role in the genetic foundation of these traits.

The HEIDI test further investigates whether the observed association is due to co-localization,
examining whether the effects of SNPs on gene expression and their effects on complex traits originate
from the same causal variant®?. If the HEIDI test confirms co-localization, the association is attributed
to shared causal variants between loci, rather than a single pleiotropic effect. This distinction improves
our understanding of the genetic mechanisms underlying these complex traits.

The SMR method thus serves a dual purpose: identifying genes shared between psychiatric disorders
and frailty and uncovering regulatory mechanisms linking genetic variation to phenotype. These

insights provide valuable clues for the discovery of novel therapeutic targets.

Co-immunoprecipitation analysis

We developed a novel co-immunoprecipitation method by integrating extensive immune GWAS data,
publicly available from the GWAS catalog, covering 731 immune cell types33. Building on our previous
hypothesis prioritization for multi-trait colocalization (HyPrColoc) method, this method significantly
enhances the precision of identifying the roles of immune traits in complex diseases. Moreover, it
effectively identifies and evaluates the plausibility of potential immune mediation models. This improved
approach offers a fresh perspective for advancing our understanding of the immune system's regulatory
mechanisms in the context of psychiatric disorders and frailty. Detailed information on the GWAS

summary datasets for immune cells was added to Additional file 1: Supplementary Methods.
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Software
The primary statistical analyses were conducted using R (version 3.5.3). LDSC and S230 LDSC
analyses were executed with the "LDSC" software (v1.0.1)34, while "PLACO" package?® was used for
PLACO analysis. Bayesian colocalization was carried out with the "coloc" package (v5.2.1)%?, and
HyPrColoc analysis utilized the "hyprcoloc" package (v1.0)3. Functional analysis was performed via
the FUMA web tool®®, and MAGMA gene and gene-set analyses were conducted using MAGMA

software?8,
Result

The shared genetic structure between psychiatric disorders and frailty

This study evaluated the genetic correlations between major depressive disorder (MDD), anxiety
disorder (AX), sleep disorder (SD), and frailty using both LDSC and HDL methods. The results from
these analyses were highly consistent, demonstrating a significant genetic correlation (P < 0.01)
between frailty and the three psychiatric disorders (Table 1 and Additional file 2: Table S2).

Table 1 Genetic correlation between psychiatric disorders and frailty

LDSC HDL
Trait pairs
ro(SE) P ro(SE) P
MDD 0.5506(0.0264) 1.9636e-96 0.6158(0.0311) 1.99e-87
AX 0.4236(0.0296) 1.56e-46 0.5162(0.0332) 1.52e-54
SD 0.5019(0.0289) 8.9428e-68 0.5692(0.0291) 2.79e-85

These findings indicate the existence of a significant shared genetic mechanism underlying frailty and
the three psychiatric disorders. Furthermore, the HDL method, with its lower estimation variance,
reinforced the robustness of the genetic correlation analyses, confirming that all three traits share a
common genetic basis to some degree. This provides compelling evidence of genetic overlap between
frailty and psychiatric disorders, highlighting their shared genetic background as a potential focal point

for developing prevention and treatment strategies.

Identification and confirmation of polymorphic risk SNP loci for multiple psychiatric disorders
and frailty

Building on the genetic correlations revealed by the LDSC and HDL methods, the PLACO method was
employed to identify and validate pleiotropic risk SNP loci. A total of 1,055 novel SNP loci associated
with frailty and psychiatric disorders were identified (P <5 x 1078), of which 748 loci passed Bonferroni
correction. Specifically, among the 527 loci associated with frailty and depression, 395 loci passed
correction (P < 0.05/4,051,101); among the 96 loci associated with frailty and anxiety, 57 loci passed
correction; and among the 432 loci associated with frailty and sleep disorders, 296 loci passed
correction (P < 0.05/4,051,051) (Additional file 2: table S3). Across the three analyses, four loci




Machine Learning

Print ISSN: 0885-6125 | Electronic ISSN: 1573-0565
Volume 26 : 2, 2025

(rs536445, rs12635614, rs3752769, and rs3752768) reached genome-wide significance, exhibiting
pleiotropic associations with all three psychiatric disorders and frailty (Table 2).

Table 2 Multiple trait shared SNPs

FI-MDD FI-AX FI-SD
SNP
T p T p T P
rs536445 26.29074 4.96E-11  [25.13737 8.59E-11 [20.52155 7.57E-09
rs12635614 25.1242 1.38E-10 [22.77734 7.07E-10 [23.24552 6.91E-10
rs3752769 24.4181 2.55E-10 [22.76959 7.12E-10 [21.63858 2.83E-09
rs3752768 25.05183 1.47E-10 [22.46289 0.36E-10  [22.67207 1.14E-09

Further analysis using the FUMA tool, based on PLACO results, confirmed 36 dominant risk SNP loci
significantly associated with frailty and psychiatric disorders (Additional file 2: Table S4). Among these,
16 loci were linked to frailty and depression (Additional file 1: Fig. S3), 7 to frailty and anxiety (Additional
file 1: Fig. S4), and 12 to frailty and sleep disorders (Additional file 1: Fig. S5).
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Fig. 2 The circular diagram presents pleiotropic loci and genes identified by PLACO among
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Additionally, co-localization analysis identified 20 potential pleiotropic loci with PP.H4 values (posterior
probability for shared causal variants) greater than 0.7 (Additional file 2: Table S5). Notably, the
genomic region 3g26.31 exhibited significant co-localization for frailty and all three psychiatric
disorders, further emphasizing its critical role in shared genetic mechanisms (Fig. 1 and Additional file

2 Table S6).

Organ association results

This study employed the S-LDSC method to assess SNP heritability enrichment for psychiatric
disorders and frailty across various cell and tissue types. Data from 54 human tissues provided by the
GTEX database were analyzed to identify significant SNP heritability enrichment in specific tissues.
This significance was evaluated using regression coefficient Z-scores and corresponding P-values,

adjusted for the baseline model and all relevant gene sets.
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The tissue-specific analysis identified significant genetic enrichment of frailty GWAS data in multiple

brain regions, including the frontal cortex ( BA9 ), brain cortex, anterior cingulate cortex ( BA24 ) ,

amygdala, hippocampus, hypothalamus, cerebellum, cerebellar hemisphere, caudate, putamen, and
nucleus accumbens. For depression, enrichment was primarily found in the anterior cingulate cortex

(BA24), brain cortex, frontal cortex (BA9), amygdala, cerebellar hemisphere, and cerebellum. Anxiety

showed genetic enrichment predominantly in the substantia nigra, frontal cortex ( BA9 ) , brain cortex,

and heart left ventricle. In contrast, sleep disorders did not exhibit notable genetic enrichment across
the 54 tissues analyzed; however, the pituitary and thyroid displayed the highest and second-highest
levels of enrichment, respectively (Additional file 2 Table S7).

A comparison of tissues significantly enriched for different traits revealed that the frontal cortex (BA9)
and brain cortex were commonly enriched in depression, anxiety, and frailty (Fig. 2). Notably, the
tissues with significant enrichment were predominantly concentrated in the nervous and endocrine
systems, underscoring their pivotal roles in the shared pathological mechanisms underlying psychiatric

disorders and frailty.

MAGMA gene hierarchical analysis

Using the FUMA tool, this study conducted MAGMA gene analysis for frailty and three psychiatric
disorders (P < 0.05/18,167, FDR < 0.05). The analysis identified 36enriched genes significantly
associated with both frailty and depression, 6 enriched genes significantly associated with both frailty
and anxiety, and 18 enriched genes significantly associated with both frailty and sleep disorders (Fig.
3 and Additional file 2 Table S8). Further pathway enrichment analysis revealed that 110 signaling
pathways were significantly enriched by genes related to all four conditions. Among these, the top five
significant pathways demonstrated that shared genes are involved in multiple key biological pathways
and processes, including the development and regulation of the postsynaptic membrane and dendritic
spines, axonal guidance, DNA groove adenine-thymidine-rich binding regions, nitrosative stress
response, cellular response to ammonium ions, regulation of let-7al targeting cancer fetal markers,
NAD*-dependent ADP-ribosyl transferase activity, adhesion bands, and DNA replication358 dependent
chromatin assembly (Fig. 4A and Additional file 2 Table S9).

Tissue-specific analysis of the gene sets showed that the enriched genes exhibited specific expression
patterns in various tissues and organs, including the cerebral cortex, cerebellum, cerebellar
hemispheres, prefrontal cortex (BA9), anterior cingulate cortex (BA24), hypothalamus, pituitary gland,
and testis, as well as regions such as the basal ganglia, caudate nucleus, and amygdala. These
findings further reveal the potential regulatory roles of these genes in neurological and endocrine
functions (Fig. 4B and 365 Additional file 2 Table S10).
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European population drug targets

By integrating SMR (p_SMR < 0.05, p_HEIDI > 0.5) based on eQTL data with PLACO, FUMA and
MAGMA analysis results, we comprehensively identified 52 significant pleiotropic gene targets with
potential drug development value in complex signals (Fig. 5), Furthermore, we verified the specific
positions of these genes on chromosomes and their target functions by precise annotation (Additional
file 2 Table S11 and Table S12). Among these, the TTC12 gene exhibited strong genetic associations
across all traits examined in this study. Additionally, within four reference drug target databases, the
AMT gene showed significant associations with frailty and depression, while the TMOD2 gene

demonstrated a strong correlation with frailty and sleep disorders.

Immuno-colocalization analysis

Previous studies have demonstrated that multiple organs within the endocrine system play pivotal roles
in regulating immune function. During immune responses, the hypothalamus and pituitary gland
interact with the hypothalamic-pituitary-adrenal (HPA) axis to modulate inflammatory reactions and
maintain immune balance, thereby influencing the onset and progression of various diseases. Building
on this understanding, our study integrated GWAS data from 731 immune cell types and utilized the
HyPrColoc method to analyze colocalization signals between frailty and three psychiatric disorders.
This approach identified immune cell types with shared causal variants (Additional file 2 Table S13).
The analysis revealed seven pleiotropic loci (rs9812579, rs4619804, rs13090388, rs6446272,
rs4466874, rs59034682, and rs2172969) that strongly support the roles of three uniqgue immune cell
types in frailty and multiple psychiatric disorders. Specifically, the results highlight the
immunomodulatory roles of CCR2 on myeloid dendritic cells (DC), SSC-A on natural killer T (NKT)
cells, CD27 on IgD-CD38br cells, CD45 on Gr MDSCs, and CD20-CD38- lymphocyte subsets,
including CD20-CD38- AC and CD20-CD38- B cells, in the pathology of frailty and psychiatric
disorders. These findings underscore the importance of potential immunological mechanisms in

disease associations and provide insights into shared immune-mediated pathways.

Discuss

This study systematically investigates the shared genetic architecture between frailty and three types
of psychiatric disorders, uncovering potential genetic associations and their underlying biological
mechanisms. These findings enhance our understanding of the common pathological basis of these
complex traits, offering critical insights into their interconnected etiology. Furthermore, the results
provide valuable guidance for developing targeted and precise interventions for these conditions in the
future.Through genetic association analysis, this study revealed a significant genetic correlation
between frailty and three types of psychiatric disorders, providing strong evidence to support the
hypothesis of shared genetic mechanisms underlying these conditions. Furthermore, HDL analysis
indicates that patients with psychiatric disorders are at an increased risk of frailty progression, aligning
with findings from previous observational studies®37-3°, For instance, a follow-up analysis of 8,108
patients with frailty demonstrated a positive correlation between depressive symptoms and frailty in
both middle-aged individuals (45-59 years, n = 4,996) and older adults (=60 years, n = 3,112), with
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both groups showing highly consistent trajectories in depressive symptoms and frailty progression“°.
Additionally, a meta-analysis of 21 observational studies investigating the association between frailty
and anxiety revealed that frail elderly individuals are significantly more likely to experience anxiety
symptoms compared to their healthy counterparts, with the risk of anxiety progressively increasing from
pre-frailty to frailty stages*l. Despite these findings, a comprehensive exploration of the genetic
mechanisms underlying these associations remains absent in the current literature, particularly at the
gene and base-pair levels, where most studies remain descriptive. To address this gap, the present
study systematically screened relevant genes and genetic variants using GWAS databases and
derived the following conclusions.
This study systematically identified a series of genetic risk loci associated with psychiatric disorders
and frailty using the PLACO method. Among these, loci such as rs12635614, rs3752769, and rs536445
demonstrated significant associations between frailty and various psychiatric disorders. Existing
research has highlighted the critical roles of these loci in disease development. For instance, rs536445
has been shown to exhibit significant genetic pleiotropy in studies investigating migraine and headache
associated with type 2 diabetes*2. Moreover, rs12635614 shows a significant correlation with unipolar
depression and insomnia*3-4>, while rs3752769 is significantly associated with drug use assessment“6.
Notably, this study is the first to uncover the pleiotropic function of rs3752768 in frailty and three types
of psychiatric disorders.Through colocalization analysis of SNP loci, this study identified that the
genomic region 3g26.31 is significantly associated with both frailty and the three psychiatric disorders.
This region, located on chromosome 3, includes key genes such as NLGN1. NLGN1 encodes a cell
surface protein that facilitates cell-cell interactions by binding to members of the neurexin family. It is
essential for synaptic function and signaling, potentially exerting its effects by recruiting and clustering
other synaptic proteins. In vitro studies suggest that it triggers the re-formation of presynaptic structures
and contributes to the specialization of excitatory synapses. Additionally, NLGN1 plays a crucial role in
maintaining the quality of wakefulness, as well as the synchronization of cortical activity during both
wakefulness and sleep. This protein is also critical for 480 nervous system development?’.
This study identified a series of potential drug gene targets, including TTC12, TMOD2, and AMT,
through multiple screening methods (SMR, PLACO, FUMA, and MAGMA). These genes exhibit strong
pleiotropic effects. TTC12 is part of a gene cluster associated with dopamine signaling pathways and
plays a critical role in regulating the expression and function of dopamine receptors*é, particularly the
D2 receptor, which influences reward and emotion regulation pathways*°. Abnormal expression of
TTC12 has been linked to an increased risk of anxiety and depression, as well as significantly reduced
sleep quality. Dysregulation of dopamine levels and neurotransmitter imbalances may also contribute
to neurodegenerative diseases, further accelerating frailty progression®.Inhibition of TMOD2 has been
identified as a key factor in the reduction of glutamate synapses and weakened excitatory synaptic
transmission®!. Glutamate, the primary excitatory neurotransmitter, enhances neural activity by
activating AMPA and NMDA receptors. Reduced receptor function or expression impairs synaptic
transmission, exacerbating anxiety symptoms. Notably, certain antidepressants, such as ketamine,
restore glutamate transmission by enhancing NMDA receptor activity, further underscoring its

importance in mood regulation®. Additionally, the balance between glutamate and the inhibitory
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neurotransmitter GABA is essential for normal sleep®3. Impaired glutamate transmission can disrupt
this balance, leading to sleep disorders. Dysfunction of glutamate may also weaken motor nerve
excitation, contributing to muscle weakness and increased fatigue.

AMT encodes a key enzyme in the one-carbon metabolic pathway, primarily involved in methyl transfer
during glycine cleavage, and is closely linked to nervous system metabolism and energy regulation>4,
Inhibition of AMT function may influence the pathological processes underlying anxiety, depression,
sleep disorders, and frailty through its role in metabolic regulation. In frail patients, energy metabolism
disorders are often accompanied by reduced physical capacity and increased fatigue. The
mitochondrial activity of AMT is also closely tied to oxidative stress and energy homeostasis. Targeting
AMT may protect neurons by mitigating oxidative stress, thereby alleviating symptoms of depression
and anxiety. Furthermore, AMT may indirectly contribute to sleep disorders by disrupting the balance
between glutamate and GABA, further emphasizing its central role in multiple pathological processes.
This study highlights the significant roles of TTC12, TMOD2, and AMT in the shared pathological
mechanisms underlying psychiatric disorders and frailty, from both genetic and functional perspectives.
These findings offer new insights and theoretical foundations for future precision therapies targeting
these conditions.

The endocrine system regulates hormonal signaling through the autonomic nervous system (ANS),
thereby influencing metabolism and energy balance®5. In pathological studies of frailty and depression,
this regulation is often disrupted by abnormal hypothalamic-pituitary-adrenal (HPA) axis function. Key
features of this dysfunction include elevated levels of thyroid-stimulating hormone (TSH), decreased
levels of free triiodothyronine (FT3), and a reduced FT3/free thyroxine (FT4) ratio%6. Additionally, aging
affects the pituitary gland, a critical organ that secretes growth hormone (GH) to stimulate the liver's
production of insulin-like growth factor-1 (IGF-1)%". IGF-1 plays an essential role in promoting neuronal
plasticity and enhancing skeletal muscle strength, thereby counteracting age-related physical
degeneration®%°. |IGF-1 also regulates the expression of inflammation- and autophagy-related genes
through specific transcription factors such as DAF-16, contributing to frailty mechanisms®°. Under
stress conditions, the HPA axis rapidly responds to pressure signals by activating the paraventricular
nucleus (PVN) of the hypothalamus, which releases corticotropin releasing factor (CRF)81. CRF
stimulates the pituitary to secrete adrenocorticotropic hormone (ACTH), which subsequently induces
glucocorticoid (GC) secretion from the adrenal cortex. Glucocorticoids mobilize energy and suppress
peripheral inflammatory responses, thereby influencing behavior and neuroendocrine function.

In the context of anxiety, neuroimaging studies have demonstrated heightened activation of the
prefrontal-parietal network and the cingulate-insular network in highly anxious individuals during high-
demand tasks®?. This compensatory response may be a key mechanism for maintaining cognitive
performance under stress. Through S-LDSC and MAGMA tissue enrichment analyses, this study found
that SNP heritability and shared genes for frailty, depression, and anxiety are predominantly
concentrated in the nervous and endocrine systems. These findings support the concept of a unified
disease mechanism and provide critical evidence for uncovering the shared genetic basis of multiple

psychiatric disorders.
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Through MAGMA analysis, multiple pathways were identified as playing critical roles in the
pathogenesis of the target diseases. For instance, both the GOCC GABAergic synapse and GOBP
gamma-aminobutyric acid (GABA) signaling pathways involve GABA as an inhibitory
neurotransmitter in the central nervous system, primarily associated with depression and anxiety®.
Although direct evidence linking GABA to frailty is currently lacking, a longitudinal study observed a
decline in GABA levels in the brains of healthy elderly individuals over time, suggesting that reduced
GABA levels may contribute to functional decline during aging®. Additionally, pathways such as GOBP
synapse assembly, GOBP synaptic signaling, and GOBP regulation of synaptic plasticity have been
associated with mood regulation and sleep disorders®5, These pathways represent distinct stages of
neuronal synaptic function, including synapse formation, signal transmission, and plasticity regulation,
emphasizing the continuity and synergy of synaptic functions in their formation, maintenance, and
adaptive changes. During aging, declines in synaptic function can result in cognitive decline, reduced
motor abilities, and decreased neuroplasticity, thereby exacerbating the onset and progression of
frailty®’.
Further analysis of pathways enriched across various traits revealed that many inflammation-related
pathways play significant roles in the pathophysiology of frailty and psychiatric disorders. For example,
GOBP cell redox homeostasis involves the regulation of cellular redox states, while REACTOME
formation of senescence563 associated heterochromatin foci (SAHF) addresses the formation of
heterochromatin foci linked to cellular senescence®. Additionally, GOBP cellular response to
lipoprotein particle stimulus highlights responses to lipoprotein particles, and GOBP arginine metabolic
process and GOBP arginine catabolic process are involved in arginine metabolism and nitric oxide
(NO) production®®-71, These findings suggest that inflammation and oxidative stress are important
components of the shared pathophysiological mechanisms underlying frailty and psychiatric disorders.
Through the analysis of previously identified pathways, this study revealed that several pathways are
closely linked to inflammation, including the regulation of complement activation and its associated cell
lysis, cellular responses to lipoprotein stimulation, arginine metabolism, and cellular mechanisms that
inhibit viral transcription and inflammatory responses. Additionally, significant genetic enrichment of
SNPs and genes was observed in the hypothalamus and pituitary regions, indicating that
neuroinflammation can activate the HPA axis, which plays a critical role in the development of frailty
and psychiatric disorders. Excessive activation of the HPA axis, leading to increased cortisol secretion,
may trigger metabolic disorders and neural dysfunction”273, Dysregulated inflammatory responses may
further result in hippocampal neuron loss, impairing the negative feedback regulation of the
glucocorticoid system, thereby exacerbating inflammation and accelerating the 582 progression of
frailty ™.
To gain a deeper understanding of the shared mechanisms between frailty and psychiatric disorders,
this study identified several immune cell markers through immuno-colocalization analysis, including
CCR2 on myeloid dendritic cells (DC), SSC-A on natural killer T (NKT) cells, CD27 on IgD-CD38br
cells, CD45 on Gr myeloid-derived suppressor cells (MDSC), and CD20-CD38- lymphocyte subsets,
including %lymphocyte, AC, and %B cell. Notably, CCR2 plays a pivotal role in the migration

and functional regulation of myeloid dendritic cells, influencing disease progression by modulating the
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inflammatory environment”. The recruitment of myeloid cells to the central nervous system (CNS) via
CCR2 may contribute to the development of neurodegenerative diseases such as multiple
sclerosis”77. Moreover, the role of CCR2 in immune responses is closely associated with depression,
anxiety, and cognitive decline’. Chronic low-grade inflammation, a key pathological feature of these
conditions, aligns with CCR2-mediated activation and migration of myeloid dendritic cells, further
exacerbating inflammatory states.

The findings related to the GOBP Regulation of Complement-Dependent Cytotoxicity pathway
(associated with complement activation and cell lysis) and the GOBP Arginine Metabolic Process
pathway (involved in arginine metabolism and inflammation) suggest that CCR2-regulated
inflammatory mechanisms may influence the metabolic activity and immune responses of myeloid
dendritic cells through arginine metabolism. Additionally, CD45-related markers identified in this study
are crucial for the function and survival of Gr MDSCs®. These cells regulate complement604
dependent cytotoxicity, which may protect the tumor microenvironment or suppress autoimmune
reactions. Dysfunction in this pathway could lead to chronic inflammation. Gr MDSCs may also
indirectly affect synaptic plasticity by inhibiting neuroinflammation-induced neuronal damage,
consistent with the GOBP Regulation of Synaptic Plasticity pathway, which directly modulates synaptic
function and is closely linked to the HPA axis's negative feedback mechanism and inflammation-driven
nerve damages?.

Finally, CD20-CD38- %lymphocyte, %B cell, and AC immune cells identified in this study may represent
cells in a unique developmental stage, such as immature, inactive, or early differentiation states. While
these cells appear to play a role in the immune mechanisms linking frailty and psychiatric disorders,
their specific functions require further investigation®.

In summary, this study comprehensively investigates the shared genetic foundation and multi-layered
biological mechanisms connecting frailty with three types of psychiatric disorders. Through the
integration of genetic analysis, functional annotation, and immune cell colocalization, it offers a detailed
understanding of the cross-mechanisms linking these complex traits. The findings provide critical
insights into the intertwined pathophysiology of frailty and psychiatric disorders, establishing a solid

theoretical basis for advancing future precision medicine approaches.

Limitation

This study has several limitations. First, the use of aggregated data, rather than individual-level data,
limits the ability to perform more detailed population stratifications, such as gender, age, or other
demographic characteristics. Second, the GWAS sample size for immune cells analyzed was relatively
small, which may affect the reliability of the findings related to immune cell involvement and warrants
cautious interpretation. Third, the analysis was restricted to individuals of European ancestry, which
could constrain the applicability of the results to other populations or ancestries. Lastly, the relatively
limited sample size of the frailty cohort may have reduced the statistical power, underscoring the need

for careful consideration when interpreting the conclusions.

Conclusions
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Our research unveils the intricate shared genetic architecture between frailty and 636 multiple
psychiatric disorders, including depression, anxiety, and sleep disorders. Through comprehensive
analysis, we identified pleiotropic risk loci (rs536445, rs12635614, rs3752769, and rs3752768), key
genes (TTC12, TMOD2, and AMT), and critical pathways such as GOCC GABAergic Synapse, GOBP
Regulation of Synaptic Plasticity, and GOBP Arginine Metabolic Process. These findings suggest
that these diseases may share common mechanisms involving synaptic function regulation,
inflammatory responses, and neurotransmitter imbalances. Additionally, tissues and organs
significantly associated with these traits—including the cerebral cortex, hypothalamus, pituitary, and
amygdala—highlight the central roles of the nervous and endocrine systems in the shared
pathophysiology of frailty and psychiatric disorders. Colocalization analysis further revealed that
immune cell types, such as myeloid dendritic cells and B cells, mediate disease progression by
regulating the inflammatory environment and HPA axis activity. Our findings provide compelling
evidence of a significant genetic association between frailty and psychiatric disorders, offering new
insights into their shared genetic and biological foundations and presenting important clues for future

precision medicine strategies.
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Appendices

Supplementary Methods
GWAS data QC
We removed all non-biallelic SNPs, SNPs with chain ambiguous alleles (A/T, C/G alleles), SNPs with
MAF <1%, and SNPs without rs IDs, duplicate SNPs, and SNPs whose alleles does not match Phase
3 of the 1000 Genomes Project. Additionally, SNPs located in major histocompatibility complex (MHC,
chr 6: 25-35 Mb) region were excluded from main analysis and annotations due to its complex LD
structure.
Pleiotropic analysis under composite null hypothesis analysis (PLACO)
This method could detect pleiotropic signals by using summary-level association statistics between
complex traits. Considering the potential correlation among autoimmune diseases, we calculated

correlation matrix of Z-scores. Then a level-a IUT method was used to test pleiotropy hypothesis: Ho is
the null hypothesis, which could be expressed as H0 . H00 ) H01U Hoz’ and alternative hypothesis H1

could be further expressed as:
H,:H A HE N HE,,
where Ho, : Bap = B =0, (1)
Hoi 1 Bap =0, Bg_a #0,
Ho, 1 Bap 20, Be_a =0.

The H?represents the complement of H. ;... represents effect size of autoimmune diseases. The

maximum of P values for testing Ho vs Hi1 were viewed as the final P values.

Bayesian colocalization analysis using coloc

The coloc package can be used to perform genetic colocalization analysis of two potentially related
phenotypes to test whether they share common genetic causal variants in given regions. The approach
assumes that each genetic variant is equally likely to affect gene expression or a trait, and is only
interested in whether shared causal variants are plausible. For different combinations of the two

phenotypes, the study offers five hypotheses: Ho: No association with either trait; Hi: Association with
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autoimmune disorders, not with B-ALL; H2: Association with B-ALL, not with autoimmune disorders; Hs:
Association with autoimmune disorders and B-ALL, two independent SNPs; Has: Association with
autoimmune disorders and B-ALL, one shared SNP. Therefore, Hs assumes that the effects of shared
variants on two traits are independent, while high PP4measures correlation, not causation.

MAGMA analysis

In MAGMA gene analysis, genetic marker data are aggregated to the gene level and converted from
the association of test SNPs to the joint association of all markers in the test gene with the phenotype.
The model for MAGMA gene analysis is based on the multiple linear principal component regression
method, which uses the F test to calculate gene p-values. In order to ensure that the model is identifiable
in the presence of highly collinear SNPs, the model projects the SNP matrix of the gene onto its principal
component (PC). Then the PCs with very small eigenvalues were pruned, the remain PCs were viewed
as predictor factors for phenotypes in the linear regression model. Likewise in MAGMA gene set
analysis, individual genes are aggregated into genomes with certain biological, functional, or other
characteristics. This aggregation has the advantage of greatly reducing the number of association tests
that need to be performed and can detect effects consisting of multiple weak associations, greatly
improving statistical power.

Multi-trait colocalization analysis using HyPrColoc

HyPrColoc is based on the similar statistical model as coloc, but unlike coloc, HyPrColoc uses summary
statistics for a large number of traits to identify multi-traits colocalization association signals. This
method accurately approximates the posterior probability of colocalization for a single causal variant by
enumerating only a small humber of putative causal associations (assuming that there is at most one
causal variant per trait), avoiding repeated pairwise colocalization analyses, and identify co-localization
signals between multiple traits efficiently and quickly. However, this method may increase the false
negative rate and reduce the performance of identifying shared causal variants to some extent.
Detailed information of immune cells used in HyPrColoc analysis

The GWAS summary statistics for 731 immune traits could be publicly available in the GWAS Catalog
(accession numbers from GCST0001391 to GCST0002121), of which 118 were absolute cell (AC)
counts, 389 were median fluorescence intensities (MFIs) reflecting the levels of surface antigens, 32
were morphological parameters [MP, forward scatter (FSC) and side scatter (SSC), which are
proportional to the cell volume, and intracellular complexity and the surface texture of cells,
respectively], and 192 were relative cell (RC) counts. This GWAS analysis was conducted based on
3,757 European samples (57% women) to test around 22 million single nucleotide polymorphisms
(SNPs) genotyped with high density arrays after adjusting for several covariates (i.e., sex, age, and

age?). Finally, these SNPs were imputed with a sequence-based reference panel.
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Figure S1. Manhattan plot of the PLACO results. Note: Red line represents the significance of
5x10°8.
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Figure S3. Regional plots of each colocalized locus (PP.H4 > 0.7) identified for corresponding
trait pair (FI&MDD) by using the PLACO. Note: PP.H4 was posterior probability of H4
calculated by coloc analysis; SNPs in LD that do not have any significant independent lead
SNPs in the selected region are grayed out. For genes, mapped genes drawn by position
mapping are in red; blue are unmapped protein-coding genes; dark gray are unmapped non-
coding genes. Abbreviations: FI, frailty; MDD, depression.
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Figure S5. Regional plots of each colocalized locus (PP.H4 > 0.7) identified for corresponding
trait pair (FI&SD) by using the PLACO. Note: PP.H4 was posterior probability of H4 calculated

by coloc analysis; SNPs in LD that do not have any significant independent lead SNPs in the

selected region are grayed out. For genes, mapped genes drawn by position mapping are in

red; blue are unmapped protein-coding genes; dark gray are unmapped non-coding genes.

Abbreviations: FlI, frailty; SD, Sleep disorders.




