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Abstract 

Frailty, a geriatric syndrome marked by reduced physiological reserves, shares 

significant biological and pathological mechanisms with psychiatric disorders such 

as depression, anxiety, and sleep disorders, yet their shared genetic underpinnings 

remain poorly understood. This study aimed to elucidate the genetic correlations and 

pleiotropic mechanisms linking frailty with these psychiatric conditions by leveraging 

genome-wide association study (GWAS) summary statistics and advanced cross-

trait pleiotropy analyses. A total of 748 pleiotropic single-nucleotide polymorphisms 
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(SNPs) were identified, with 36 loci confirmed as dominant risk factors and 20 

validated through causal co-localization analysis. Gene-level analyses pinpointed 

key pleiotropic genes (e.g., TTC12, TMOD2, and AMT), and pathway enrichment 

analyses revealed significant involvement of synaptic plasticity, arginine metabolism, 

and complement24 dependent cytotoxicity regulation. Tissue-specific enrichment 

highlighted the hypothalamus, frontal cortex, and pituitary as critical sites, while 

immune co26 localization analyses implicated B cells, dendritic cells, and myeloid 

subsets in disease mediation. These findings underscore the shared genetic and 

immune regulatory mechanisms underlying frailty and psychiatric disorders, 

providing novel insights into their interconnected pathophysiology and identifying 

potential therapeutic targets. This study not only bridges critical gaps in the 

understanding of these conditions but also offers a foundation for precision medicine 

strategies to improve clinical outcomes in aging populations. 
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Introduction 

Frailty, a prevalent geriatric syndrome, is characterized by diminished physiological reserve and 

reduced resilience to external stress, resulting in a comprehensive decline in physical fitness, mobility, 

and overall health. Its pathological basis lies in the disruption of multi-system homeostasis, including 

dysfunction of the nervous, endocrine-metabolic, and immune systems1. Psychiatric disorders, 

characterized by disturbances in cognition, emotional regulation, and behavior, often lead to significant 

personal distress and impaired daily functioning2. Notably, both frailty and psychiatric disorders are 

strongly associated with chronic systemic low-grade inflammation, a phenomenon termed 

“inflammaging” in elderly populations3–6. Elevated levels of C reactive protein (CRP) and pro-

inflammatory cytokines such as IL-6 and TNF-α not only contribute to the onset of psychiatric disorders 

but also accelerate frailty progression4,7. Sustained activation of these inflammatory cytokines can 

induce neuroinflammation, impair central nervous system function, and exacerbate psychiatric 

symptoms. Additionally, overactivation of the hypothalamic-pituitary-adrenal (HPA) axis leads to 

elevated cortisol levels, which inhibit neurogenesis and promote symptoms of anxiety and depression8. 

Meanwhile, dysfunction of neurotransmitter systems,  exacerbated by neuronal impairment, further 

accelerates the progression of frailty. Collectively, these findings underscore the existence of shared 

biological mechanisms between frailty and psychiatric disorders, highlighting their interconnected 

pathophysiological processes. 

Epidemiological studies strongly support the association between frailty and various psychiatric 

disorders. For instance, compared to the healthy population, frail individuals face approximately 1.5 

times higher risk of sleep disorders, a threefold increase in the risk of major depressive disorder, and 

a 2.5-fold increase in the incidence of anxiety. Among hospitalized elderly patients with psychiatric 

disorders, frailty prevalence reaches as high as 52.5% to 59.2%9. Assessments using the Pittsburgh 
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Sleep Index have revealed significantly higher rates of sleep disorders in the pre-frailty and frailty 

groups (37% and 37.6%, respectively) compared to the control group10. Multivariate logistic regression 

analysis further confirms that poor sleep quality is an independent risk factor for frailty11. While prior 

studies have identified associations between frailty and individual psychiatric disorders, they primarily 

focus on observational evidence and lack systematic investigation into the pleiotropic mechanisms 

underlying multiple psychiatric disorders and frailty. For example, research by Atkins et al. suggests 

that the shared mechanisms between depression and frailty may involve genetic functions within the 

prefrontal cortex and hippocampus12. However, the genetic basis of frailty remains incompletely 

understood, with heritability estimates ranging between 30% and 45%13. Candidate gene association 

studies have implicated genes such as IL-18 in frailty-related inflammatory pathways14. Given these 

significant knowledge gaps, there is an urgent need for comprehensive exploration of shared genetic 

risk loci to better understand the common biological mechanisms linking  frailty and psychiatric 

disorders. 

In recent years, methods such as high-resolution likelihood (HDL) and linkage disequilibrium score 

regression (LDSC) based on aggregated GWAS data have been developed to uncover genetic 

correlations between diseases15,16. However, it remains unclear whether these correlations arise from 

effects at specific loci or across the entire genome. Cross-trait analyses have proven effective in 

identifying shared loci between diseases, which can serve as potential therapeutic targets and offer 

novel insights into disease prevention and treatment17–19. Utilizing the newly developed pleiotropy 

analysis method (PLACO) under the composite null hypothesis20, this study aims to identify pleiotropic 

genetic loci at the SNP level and provide a deeper understanding of the shared genetic mechanisms 

underlying complex diseases. Our research flowchart is shown in Fig. 1. 

 

Fig. 1 Study workflow 
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Methods 

GWAS summary data source 

The GWAS summary statistics for the three psychiatric disorders analyzed in this study were obtained 

from publicly available large-scale GWAS databases21. Frailty GWAS data (GWAS ID: ebi-a-

GCST90020053) were derived from two meta-analyses: the UK Biobank cohort of European ancestry 

(n = 164,610) and the Swedish TwinGene study (n = 10,616)12. A standardized quality control protocol 

was applied across all datasets, assessing the association between frailty and SNP genotypes using 

logistic regression analysis. Risk estimates were subsequently combined through meta-analysis using 

the ixed-effects inverse variance weighting (IVW) method22. Data for all three mental disorders were 

obtained from the FinnGen R11 database (GWAS ID for depressive disorder:  

finngen_R11_F5_DEPRESSIO, GWAS ID for anxiety disorder:  

finngen_R11_F5_ALLANXIOUS, GWAS ID for sleep disorders:  

finngen_R11_SLEEP)21. The sources and details of these datasets are summarized in 114 Additional 

file 2: Table S1. 

Quality control 

To ensure data accuracy and reliability, rigorous quality control measures were applied. First, SNPs 

within the major histocompatibility complex (MHC) region, spanning the 25 Mb to 35 Mb interval on 

chromosome 6, were excluded from the analysis23. Due to its highly complex gene structure and 

extensive linkage disequilibrium, this region is prone to false-positive results and is typically excluded 

in GWAS studies. Second, to minimize the impact of rare variations, a minor allele frequency (MAF) 

threshold was set at >0.01, retaining only SNPs with a minor allele frequency greater than 1%. This 

filtering step ensures a focus on common variants, thereby improving statistical power and reducing 

the likelihood of false positives. Additionally, checks for sample and marker quality were performed. 

For samples, a call rate threshold of >95% was applied, while for markers, a stricter call rate threshold 

of >99% was enforced. Samples and  markers failing to meet these criteria were excluded to maintain 

data integrity and  ensure the robustness of the analysis. 

Genomic wide genetic association analysis 

To investigate the shared genetic framework between psychiatric disorders and frailty, linkage LDSC 

was utilized15. The linkage disequilibrium (LD) scores for this analysis were derived from common SNP 

genotypes of European ancestry samples provided by the 1000 Genomes Project24. The standard error 

(SE) was estimated using the leave one-out method, which was then applied to adjust for attenuation 

bias. Furthermore, the LDSC intercept was employed to assess potential population overlap among 

the datasets15. Notably, our analysis confirmed no population overlap between the datasets for 

psychiatric disorders and frailty, thereby enhancing the reliability of the results.To further validate the 

findings from LDSC, we utilized HDL, a likelihood-based analytical tool. HDL leverages GWAS 

summary statistics more effectively than LDSC, reducing the variance in genetic association estimates 

by approximately 60%. This results in significantly improved accuracy and robustness16. By cross-
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validating the LDSC results with HDL, we ensured the reliability and robustness of the genetic overlap 

analysis. 

Recognition of pleiotropy loci 

In this study, we employed the PLACO method to systematically identify genetic  associations between 

frailty and three types of psychiatric disorders at the SNP level. PLACO is a statistical approach 

specifically designed to detect gene pleiotropy, enabling the identification of shared genetic variants 

across multiple phenotypes. Using this method, we effectively identified SNPs that demonstrate 

significant associations with multiple diseases25. 

SNPs reaching genome-wide significance (P < 5 × 10⁻⁸) were classified as pleiotropic variants, 

indicating their strong genetic associations with multiple phenotypes and their potential role in the 

pathogenesis of these conditions. Identifying such pleiotropic variants is crucial for uncovering the 

shared genetic basis between psychiatric disorders and frailty. To further validate the biological 

significance of these pleiotropic SNPs, we utilized the Functional Mapping and Annotation (FUMA) tool, 

which enables mapping of risk variants to specific genomic regions (i.e., risk loci), providing deeper 

insights into their potential functions. Additionally, Bayesian co-localization analysis was performed to 

identify loci shared by frailty and psychiatric disorders26. 

Tissue-specific enrichment analysis 

To investigate the genetic associations between frailty and psychiatric disorders across different 

tissues and organs, this study analyzed the enrichment of SNP heritability in specific cell and tissue 

types. Stratified-LDSC (S-LDSC) was employed to evaluate GWAS summary statistics for various 

tissues and organs, identifying the genetic enrichment significance of specific traits. Expression data 

for 54 human tissues were obtained from the GTEx database and analyzed using the S-LDSC method 

to assess SNP heritability enrichment levels for each tissue and cell type27. These steps ensured both 

the accuracy and robustness of the analysis. Ultimately, this study aims to uncover potential shared 

genetic mechanisms underlying frailty and psychiatric disorders. 

Gene level pleiotropy analysis 

To explore the mechanisms underlying the identified loci, nearby genes were mapped based on the 

dominant SNPs within each locus. The Generalized Gene Set Analysis (MAGMA) method was applied 

to evaluate the multi-trait effects of GWAS data and determine the biological roles of these pleiotropic 

gene loci. Specifically, MAGMA gene analysis identified pleiotropic genes by incorporating LD between 

SNPs and detecting multi-trait effects (P < 0.05/18,345 = 2.73 × 10⁻⁶)28. Additionally, MAGMA gene 

cluster analysis was performed to investigate the biological roles of dominant SNPs28. Gene sets from 

the Molecular Signatures Database (MSigDB), including curated gene sets (c2.all) and Gene Ontology 

categories (c5.bp, c5.cc, and c5.mf), were analyzed. To reduce the likelihood of false positives, 

Bonferroni correction was applied to all gene sets (P < 0.05/10,678 = 4.68 × 10⁻⁶)29. 

Pathway enrichment analysis was conducted using the Metascape web tool (metascape.org) to identify 

the functions of the mapped genes based on the MSigDB database30. Additionally, genome-wide 

tissue-specific enrichment analysis was performed on pleiotropic results obtained from PLACO, 
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utilizing expression data from 54 GTEx tissues. For this analysis, the average expression levels of all 

identified pleiotropic genes were log2-transformed across the 54 GTEx tissues. Tissue-specific tests 

were then carried out using differential expression genes (DEGs) in each tissue, with upregulated and 

downregulated DEGs pre-classified based on the direction of the t-statistic. 

Exploration of drug targets in European populations 

The Mendelian randomization (SMR) method, utilizing summary-level data, combines GWAS summary 

statistics with expression quantitative trait loci (eQTL) data to uncover gene expression levels 

associated with complex traits via pleiotropy31. eQTL represents genetic variants that impact gene 

expression levels, helping to explain individual differences in gene expression. By examining the 

relationship between specific SNPs and gene expression levels, eQTL studies can identify genetic 

variations that influence gene expression. 

The SMR framework integrates eQTL data with GWAS data to investigate the potential mechanisms 

through which SNPs affect complex traits, including diseases. Using the SMR and HEterogeneity in 

Dependent Instrument (HEIDI) methods, pleiotropic associations between gene expression and 

complex traits are evaluated. The primary objective of SMR analysis is to assess whether the impact 

of an SNP on a phenotype is mediated by alterations in gene expression. If an SNP is linked to both 

gene expression and complex traits, this suggests pleiotropy, indicating that the gene may play a pivotal 

role in the genetic foundation of these traits. 

The HEIDI test further investigates whether the observed association is due to co-localization, 

examining whether the effects of SNPs on gene expression and their effects on complex traits originate 

from the same causal variant32. If the HEIDI test confirms co-localization, the association is attributed 

to shared causal variants between loci, rather than a single pleiotropic effect. This distinction improves 

our understanding of the genetic mechanisms underlying these complex traits. 

The SMR method thus serves a dual purpose: identifying genes shared between psychiatric disorders 

and frailty and uncovering regulatory mechanisms linking genetic variation to phenotype. These 

insights provide valuable clues for the discovery of novel therapeutic targets. 

Co-immunoprecipitation analysis 

We developed a novel co-immunoprecipitation method by integrating extensive immune GWAS data, 

publicly available from the GWAS catalog, covering 731 immune cell types33. Building on our previous 

hypothesis prioritization for multi-trait colocalization (HyPrColoc) method, this method significantly 

enhances the precision of identifying the roles of immune traits in complex diseases. Moreover, it 

effectively identifies and evaluates the plausibility of potential immune mediation models. This improved 

approach offers a fresh perspective for advancing our understanding of the immune system's regulatory 

mechanisms in the context of psychiatric disorders and frailty. Detailed information on the GWAS 

summary datasets for immune cells was added to Additional file 1: Supplementary Methods. 
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Software 

The primary statistical analyses were conducted using R (version 3.5.3). LDSC and S230 LDSC 

analyses were executed with the "LDSC" software (v1.0.1)34, while "PLACO" package20 was used for 

PLACO analysis. Bayesian colocalization was carried out with the "coloc" package (v5.2.1)32, and 

HyPrColoc analysis utilized the "hyprcoloc" package (v1.0)35. Functional analysis was performed via 

the FUMA web tool36, and MAGMA gene and gene-set analyses were conducted using MAGMA 

software28.  

Result 

The shared genetic structure between psychiatric disorders and frailty 

This study evaluated the genetic correlations between major depressive disorder (MDD), anxiety 

disorder (AX), sleep disorder (SD), and frailty using both LDSC and HDL methods. The results from 

these analyses were highly consistent, demonstrating a significant genetic correlation (P < 0.01) 

between frailty and the three psychiatric disorders (Table 1 and Additional file 2: Table S2). 

Table 1 Genetic correlation between psychiatric disorders and frailty 

Trait pairs 
LDSC HDL 

rg(SE) P rg(SE) P 

MDD 0.5506(0.0264) 1.9636e-96 0.6158(0.0311) 1.99e-87 

AX 0.4236(0.0296) 1.56e-46 0.5162(0.0332) 1.52e-54 

SD 0.5019(0.0289) 8.9428e-68 0.5692(0.0291) 2.79e-85 

These findings indicate the existence of a significant shared genetic mechanism underlying frailty and 

the three psychiatric disorders. Furthermore, the HDL method, with its lower estimation variance, 

reinforced the robustness of the genetic correlation analyses, confirming that all three traits share a 

common genetic basis to some degree. This provides compelling evidence of genetic overlap between 

frailty and psychiatric disorders, highlighting their shared genetic background as a potential focal point 

for developing prevention and treatment strategies. 

Identification and confirmation of polymorphic risk SNP loci for multiple psychiatric disorders 

and frailty 

Building on the genetic correlations revealed by the LDSC and HDL methods, the PLACO method was 

employed to identify and validate pleiotropic risk SNP loci. A total of 1,055 novel SNP loci associated 

with frailty and psychiatric disorders were identified (P < 5 × 10⁻⁸), of which 748 loci passed Bonferroni 

correction. Specifically, among the 527 loci associated with frailty and depression, 395 loci passed 

correction (P < 0.05/4,051,101); among the 96 loci associated with frailty and anxiety, 57 loci passed 

correction; and among the 432 loci associated with frailty and sleep disorders, 296 loci passed 

correction (P < 0.05/4,051,051) (Additional file 2: table S3). Across the three analyses, four loci 
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(rs536445, rs12635614, rs3752769, and rs3752768) reached genome-wide significance, exhibiting 

pleiotropic associations with all three psychiatric disorders and frailty (Table 2). 

Table 2 Multiple trait shared SNPs 

SNP 

FI-MDD FI-AX FI-SD 

T p T p T p 

rs536445 26.29074 4.96E-11 25.13737 8.59E-11 20.52155 7.57E-09 

rs12635614 25.1242 1.38E-10 22.77734 7.07E-10 23.24552 6.91E-10 

rs3752769 24.4181 2.55E-10 22.76959 7.12E-10 21.63858 2.83E-09 

rs3752768 25.05183 1.47E-10 22.46289 9.36E-10 22.67207 1.14E-09 

Further analysis using the FUMA tool, based on PLACO results, confirmed 36 dominant risk SNP loci 

significantly associated with frailty and psychiatric disorders (Additional file 2: Table S4). Among these, 

16 loci were linked to frailty and depression (Additional file 1: Fig. S3), 7 to frailty and anxiety (Additional 

file 1: Fig. S4), and 12 to frailty and sleep disorders (Additional file 1: Fig. S5). 

 

Fig. 2 The circular diagram presents pleiotropic loci and genes identified by PLACO among 

three trait pairs. Note: Multi-trait shared loci highlighted in orange. FI frailty, MDD depression, 

AD anxiety, SD sleep disorders 
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Additionally, co-localization analysis identified 20 potential pleiotropic loci with PP.H4 values (posterior 

probability for shared causal variants) greater than 0.7 (Additional file 2: Table S5). Notably, the 

genomic region 3q26.31 exhibited significant co-localization for frailty and all three psychiatric 

disorders, further emphasizing its critical role in shared genetic mechanisms (Fig. 1 and Additional file 

2 Table S6). 

Organ association results 

This study employed the S-LDSC method to assess SNP heritability enrichment for psychiatric 

disorders and frailty across various cell and tissue types. Data from 54 human tissues provided by the 

GTEx database were analyzed to identify significant SNP heritability enrichment in specific tissues. 

This significance was evaluated using regression coefficient Z-scores and corresponding P-values, 

adjusted for the baseline model and all relevant gene sets. 

 

Fig. 3 Heat maps of tissue and organ features common between mental disorders and 

debilitating disorders identified by S-LDSC. Abbreviations: FI frailty, MDD depression, AD 

anxiety, SD sleep disorders 



Machine Learning 

Print ISSN: 0885-6125 | Electronic ISSN: 1573-0565  

Volume 26 : 2, 2025 

 

 

 34 

The tissue-specific analysis identified significant genetic enrichment of frailty GWAS data in multiple 

brain regions, including the frontal cortex （BA9）, brain cortex, anterior cingulate cortex（BA24）, 

amygdala, hippocampus, hypothalamus, cerebellum, cerebellar hemisphere, caudate, putamen, and 

nucleus accumbens. For depression, enrichment was primarily found in the anterior cingulate cortex 

(BA24), brain cortex, frontal cortex (BA9), amygdala, cerebellar hemisphere, and cerebellum. Anxiety 

showed genetic enrichment predominantly in the substantia nigra, frontal cortex （BA9）, brain cortex, 

and heart left ventricle. In contrast, sleep disorders did not exhibit notable genetic enrichment across 

the 54 tissues analyzed; however, the pituitary and thyroid displayed the highest and second-highest 

levels of enrichment, respectively (Additional file 2 Table S7). 

A comparison of tissues significantly enriched for different traits revealed that the frontal cortex (BA9) 

and brain cortex were commonly enriched in depression, anxiety, and frailty (Fig. 2). Notably, the 

tissues with significant enrichment were predominantly concentrated in the nervous and endocrine 

systems, underscoring their pivotal roles in the shared pathological mechanisms underlying psychiatric 

disorders and frailty. 

MAGMA gene hierarchical analysis 

Using the FUMA tool, this study conducted MAGMA gene analysis for frailty and three psychiatric 

disorders (P < 0.05/18,167, FDR < 0.05). The analysis identified 36enriched genes significantly 

associated with both frailty and depression, 6 enriched genes significantly associated with both frailty 

and anxiety, and 18 enriched genes significantly associated with both frailty and sleep disorders (Fig. 

3 and Additional file 2 Table S8). Further pathway enrichment analysis revealed that 110 signaling 

pathways were significantly enriched by genes related to all four conditions. Among these, the top five 

significant pathways demonstrated that shared genes are involved in multiple key biological pathways 

and processes, including the development and regulation of the postsynaptic membrane and dendritic 

spines, axonal guidance, DNA groove adenine-thymidine-rich binding regions, nitrosative stress 

response, cellular response to ammonium ions, regulation of let-7a1 targeting cancer fetal markers, 

NAD⁺-dependent ADP-ribosyl transferase activity, adhesion bands, and DNA replication358 dependent 

chromatin assembly (Fig. 4A and Additional file 2 Table S9). 

Tissue-specific analysis of the gene sets showed that the enriched genes exhibited specific expression 

patterns in various tissues and organs, including the cerebral cortex, cerebellum, cerebellar 

hemispheres, prefrontal cortex (BA9), anterior cingulate cortex (BA24), hypothalamus, pituitary gland, 

and testis, as well as regions such as the basal ganglia, caudate nucleus, and amygdala. These 

findings further reveal the potential regulatory roles of these genes in neurological and endocrine 

functions (Fig. 4B and 365 Additional file 2 Table S10). 
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Fig. 4 Manhattan plot of MAGMA gene analysis. Note: Red dot lines represent the Bonferroni 

significant threshold (P < 0.05/18,294) and the significant genes were labeled 

 

Fig. 5 Bar plot of MAGMA gene-set (A) and tissue-specific (B) analysis for genome-wide 

pleiotropic results. Note: The red dotted line represents the significance of 0.05 after multiple 

corrections, and the blue represents the significance of 0.05. Abbreviations: FI frailty, MDD 

depression, AD anxiety, SD sleep disorders 
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European population drug targets 

By integrating SMR (p_SMR < 0.05, p_HEIDI > 0.5) based on eQTL data with PLACO, FUMA and 

MAGMA analysis results, we comprehensively identified 52 significant pleiotropic gene targets with 

potential drug development value in complex signals (Fig. 5), Furthermore, we verified the specific 

positions of these genes on chromosomes and their target functions by precise annotation (Additional 

file 2 Table S11 and Table S12). Among these, the TTC12 gene exhibited strong genetic associations 

across all traits examined in this study. Additionally, within four reference drug target databases, the  

AMT gene showed significant associations with frailty and depression, while the TMOD2 gene 

demonstrated a strong correlation with frailty and sleep disorders. 

Immuno-colocalization analysis 

Previous studies have demonstrated that multiple organs within the endocrine system play pivotal roles 

in regulating immune function. During immune responses, the hypothalamus and pituitary gland 

interact with the hypothalamic-pituitary-adrenal (HPA) axis to modulate inflammatory reactions and 

maintain immune balance, thereby influencing the onset and progression of various diseases. Building 

on this understanding, our study integrated GWAS data from 731 immune cell types and utilized the 

HyPrColoc method to analyze colocalization signals between frailty and three psychiatric disorders. 

This approach identified immune cell types with shared  causal variants (Additional file 2 Table S13). 

The analysis revealed seven pleiotropic loci (rs9812579, rs4619804, rs13090388, rs6446272, 

rs4466874, rs59034682, and rs2172969) that strongly support the roles of three unique immune cell 

types in frailty and multiple psychiatric disorders. Specifically, the results highlight the 

immunomodulatory roles of CCR2 on myeloid dendritic cells (DC), SSC-A on natural killer T (NKT) 

cells, CD27 on IgD-CD38br cells, CD45 on Gr MDSCs, and CD20-CD38- lymphocyte subsets, 

including CD20-CD38- AC and CD20-CD38- B cells, in the pathology of frailty and psychiatric 

disorders. These findings underscore the importance of potential immunological mechanisms in 

disease associations and provide insights into shared immune-mediated pathways. 

Discuss 

This study systematically investigates the shared genetic architecture between frailty and three types 

of psychiatric disorders, uncovering potential genetic associations and their underlying biological 

mechanisms. These findings enhance our understanding of the common pathological basis of these 

complex traits, offering critical insights into their interconnected etiology. Furthermore, the results 

provide valuable guidance for developing targeted and precise interventions for these conditions in the 

future.Through genetic association analysis, this study revealed a significant genetic correlation 

between frailty and three types of psychiatric disorders, providing strong evidence to support the 

hypothesis of shared genetic mechanisms underlying these conditions. Furthermore, HDL analysis 

indicates that patients with psychiatric disorders are at an increased risk of frailty progression, aligning 

with findings from previous observational studies10,37–39. For instance, a follow-up analysis of 8,108 

patients with frailty demonstrated a positive correlation between depressive symptoms and frailty in 

both middle-aged individuals (45–59 years, n = 4,996) and older adults (≥60 years, n = 3,112), with 
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both groups showing highly consistent trajectories in depressive symptoms and frailty progression40. 

Additionally, a meta-analysis of 21 observational studies investigating the association between frailty 

and anxiety revealed that frail elderly individuals are significantly more likely to experience anxiety 

symptoms compared to their healthy counterparts, with the risk of anxiety progressively increasing from 

pre-frailty to frailty stages41. Despite these findings, a comprehensive exploration of the genetic 

mechanisms underlying these associations remains absent in the current literature, particularly at the 

gene and base-pair levels, where most studies remain descriptive. To address this gap, the present 

study systematically screened relevant genes and genetic variants using GWAS databases and 

derived the following conclusions. 

This study systematically identified a series of genetic risk loci associated with psychiatric disorders 

and frailty using the PLACO method. Among these, loci such as rs12635614, rs3752769, and rs536445 

demonstrated significant associations between frailty and various psychiatric disorders. Existing 

research has highlighted the critical roles of these loci in disease development. For instance, rs536445 

has been shown to exhibit significant genetic pleiotropy in studies investigating migraine and headache 

associated with type 2 diabetes42. Moreover, rs12635614 shows a significant correlation with unipolar 

depression and insomnia43–45, while rs3752769 is significantly associated with drug use assessment46. 

Notably, this study is the first to uncover the pleiotropic function of rs3752768 in frailty and three types 

of psychiatric disorders.Through colocalization analysis of SNP loci, this study identified that the 

genomic region 3q26.31 is significantly associated with both frailty and the three psychiatric disorders. 

This region, located on chromosome 3, includes key genes such as NLGN1. NLGN1 encodes a cell 

surface protein that facilitates cell-cell interactions by binding to members of the neurexin family. It is 

essential for synaptic function and signaling, potentially exerting its effects by recruiting and clustering 

other synaptic proteins. In vitro studies suggest that it triggers the re-formation of presynaptic structures 

and contributes to the specialization of excitatory synapses. Additionally, NLGN1 plays a crucial role in 

maintaining the quality of wakefulness, as well as the synchronization of cortical activity during both 

wakefulness and sleep. This protein is also critical for 480 nervous system development47. 

This study identified a series of potential drug gene targets, including TTC12, TMOD2, and AMT, 

through multiple screening methods (SMR, PLACO, FUMA, and MAGMA). These genes exhibit strong 

pleiotropic effects. TTC12 is part of a gene cluster associated with dopamine signaling pathways and 

plays a critical role in regulating the expression and function of dopamine receptors48, particularly the 

D2 receptor, which influences reward and emotion regulation pathways49. Abnormal expression of 

TTC12 has been linked to an increased risk of anxiety and depression, as well as significantly reduced 

sleep quality. Dysregulation of dopamine levels and neurotransmitter imbalances may also contribute 

to neurodegenerative diseases, further accelerating frailty progression50.Inhibition of TMOD2 has been 

identified as a key factor in the reduction of glutamate synapses and weakened excitatory synaptic 

transmission51. Glutamate, the primary excitatory neurotransmitter, enhances neural activity by 

activating AMPA and NMDA receptors. Reduced receptor function or expression impairs synaptic 

transmission, exacerbating anxiety symptoms. Notably, certain antidepressants, such as ketamine, 

restore glutamate transmission by enhancing NMDA receptor activity, further underscoring its 

importance in mood regulation52. Additionally, the balance between glutamate and the inhibitory 
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neurotransmitter GABA is essential for normal sleep53. Impaired glutamate transmission can disrupt 

this balance, leading to sleep disorders. Dysfunction of glutamate may also weaken motor nerve 

excitation, contributing to muscle weakness and increased fatigue. 

AMT encodes a key enzyme in the one-carbon metabolic pathway, primarily involved in methyl transfer 

during glycine cleavage, and is closely linked to nervous system metabolism and energy regulation54. 

Inhibition of AMT function may influence the pathological processes underlying anxiety, depression, 

sleep disorders, and frailty through its role in metabolic regulation. In frail patients, energy metabolism 

disorders are often accompanied by reduced physical capacity and increased fatigue. The 

mitochondrial activity of AMT is also closely tied to oxidative stress and energy homeostasis. Targeting 

AMT may protect neurons by mitigating oxidative stress, thereby alleviating symptoms of depression 

and anxiety. Furthermore, AMT may indirectly contribute to sleep disorders by disrupting the balance 

between glutamate and GABA, further emphasizing its central role in multiple pathological processes. 

This study highlights the significant roles of TTC12, TMOD2, and AMT in the shared pathological 

mechanisms underlying psychiatric disorders and frailty, from both genetic and functional perspectives. 

These findings offer new insights and theoretical foundations for future precision therapies targeting 

these conditions. 

The endocrine system regulates hormonal signaling through the autonomic nervous system (ANS), 

thereby influencing metabolism and energy balance55. In pathological studies of frailty and depression, 

this regulation is often disrupted by abnormal hypothalamic-pituitary-adrenal (HPA) axis function. Key 

features of this dysfunction include elevated levels of thyroid-stimulating hormone (TSH), decreased 

levels of free triiodothyronine (FT3), and a reduced FT3/free thyroxine (FT4) ratio56. Additionally, aging 

affects the pituitary gland, a critical organ that secretes growth hormone (GH) to stimulate the liver's 

production of insulin-like growth factor-1 (IGF-1)57. IGF-1 plays an essential role in promoting neuronal 

plasticity and enhancing skeletal muscle strength, thereby counteracting age-related physical 

degeneration58,59. IGF-1 also regulates the expression of inflammation- and autophagy-related genes 

through specific transcription factors such as DAF-16, contributing to frailty mechanisms60. Under 

stress conditions, the HPA axis rapidly responds to pressure signals by activating the paraventricular 

nucleus (PVN) of the hypothalamus, which releases corticotropin releasing factor (CRF)61. CRF 

stimulates the pituitary to secrete adrenocorticotropic hormone (ACTH), which subsequently induces 

glucocorticoid (GC) secretion from the adrenal cortex. Glucocorticoids mobilize energy and suppress 

peripheral inflammatory responses, thereby influencing behavior and neuroendocrine function. 

In the context of anxiety, neuroimaging studies have demonstrated heightened activation of the 

prefrontal-parietal network and the cingulate-insular network in highly anxious individuals during high-

demand tasks62. This compensatory response may be a key mechanism for maintaining cognitive 

performance under stress. Through S-LDSC and MAGMA tissue enrichment analyses, this study found 

that SNP heritability and shared genes for frailty, depression, and anxiety are predominantly 

concentrated in the nervous and endocrine systems. These findings support the concept of a unified 

disease mechanism and provide critical evidence for uncovering the shared genetic basis of multiple 

psychiatric disorders. 
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Through MAGMA analysis, multiple pathways were identified as playing critical roles in the 

pathogenesis of the target diseases. For instance, both the GOCC GABAergic synapse and GOBP 

gamma-aminobutyric acid (GABA) signaling pathways involve GABA as an inhibitory 

neurotransmitter in the central nervous system, primarily associated with depression and anxiety63. 

Although direct evidence linking GABA to frailty is currently lacking, a longitudinal study observed a 

decline in GABA levels in the brains of healthy elderly individuals over time, suggesting that reduced 

GABA levels may contribute to functional decline during aging64. Additionally, pathways such as GOBP 

synapse assembly, GOBP synaptic signaling, and GOBP regulation of synaptic plasticity have been 

associated with mood regulation and sleep disorders65,66. These pathways represent distinct stages of 

neuronal synaptic function, including synapse formation, signal transmission, and plasticity regulation, 

emphasizing the continuity and synergy of synaptic functions in their formation, maintenance, and 

adaptive changes. During aging, declines in synaptic function can result in cognitive decline, reduced 

motor abilities, and decreased neuroplasticity, thereby exacerbating the onset and progression of 

frailty67. 

Further analysis of pathways enriched across various traits revealed that many inflammation-related 

pathways play significant roles in the pathophysiology of frailty and psychiatric disorders. For example, 

GOBP cell redox homeostasis involves the regulation of cellular redox states, while REACTOME 

formation of senescence563 associated heterochromatin foci (SAHF) addresses the formation of 

heterochromatin foci linked to cellular senescence68. Additionally, GOBP cellular response to 

lipoprotein particle stimulus highlights responses to lipoprotein particles, and GOBP arginine metabolic 

process and GOBP arginine catabolic process are involved in arginine metabolism and nitric oxide 

(NO) production69–71. These findings suggest that inflammation and oxidative stress are important 

components of the shared pathophysiological mechanisms underlying frailty and psychiatric disorders. 

Through the analysis of previously identified pathways, this study revealed that several pathways are 

closely linked to inflammation, including the regulation of complement activation and its associated cell 

lysis, cellular responses to lipoprotein stimulation, arginine metabolism, and cellular mechanisms that 

inhibit viral transcription and inflammatory responses. Additionally, significant genetic enrichment of 

SNPs and genes was observed in the hypothalamus and pituitary regions, indicating that 

neuroinflammation can activate the HPA axis, which plays a critical role in the development of frailty 

and psychiatric disorders. Excessive activation of the HPA axis, leading to increased cortisol secretion, 

may trigger metabolic disorders and neural dysfunction72,73. Dysregulated inflammatory responses may 

further result in hippocampal neuron loss, impairing the negative feedback regulation of the 

glucocorticoid system, thereby exacerbating inflammation and accelerating the 582 progression of 

frailty74. 

To gain a deeper understanding of the shared mechanisms between frailty and psychiatric disorders, 

this study identified several immune cell markers through immuno-colocalization analysis, including 

CCR2 on myeloid dendritic cells (DC), SSC-A on natural killer T (NKT) cells, CD27 on IgD-CD38br 

cells, CD45 on Gr myeloid-derived suppressor cells (MDSC), and CD20-CD38- lymphocyte subsets, 

including %lymphocyte, AC, and %B cell. Notably, CCR2 plays a pivotal role in the migration 

and functional regulation of myeloid dendritic cells, influencing disease progression by modulating the 
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inflammatory environment75. The recruitment of myeloid cells to the central nervous system (CNS) via 

CCR2 may contribute to the development of neurodegenerative diseases such as multiple 

sclerosis76,77. Moreover, the role of CCR2 in immune responses is closely associated with depression, 

anxiety, and cognitive decline78. Chronic low-grade inflammation, a key pathological feature of these 

conditions, aligns with CCR2-mediated activation and migration of myeloid dendritic cells, further 

exacerbating inflammatory states. 

The findings related to the GOBP Regulation of Complement-Dependent Cytotoxicity pathway 

(associated with complement activation and cell lysis) and the GOBP Arginine Metabolic Process 

pathway (involved in arginine metabolism and inflammation) suggest that CCR2-regulated 

inflammatory mechanisms may influence the metabolic activity and immune responses of myeloid 

dendritic cells through arginine metabolism79. Additionally, CD45-related markers identified in this study 

are crucial for the function and survival of Gr MDSCs80. These cells regulate complement604 

dependent cytotoxicity, which may protect the tumor microenvironment or suppress autoimmune 

reactions. Dysfunction in this pathway could lead to chronic inflammation. Gr MDSCs may also 

indirectly affect synaptic plasticity by inhibiting neuroinflammation-induced neuronal damage, 

consistent with the GOBP Regulation of Synaptic Plasticity pathway, which directly modulates synaptic 

function and is closely linked to the HPA axis's negative feedback mechanism and inflammation-driven 

nerve damage81. 

Finally, CD20-CD38- %lymphocyte, %B cell, and AC immune cells identified in this study may represent 

cells in a unique developmental stage, such as immature, inactive, or early differentiation states. While 

these cells appear to play a role in the immune mechanisms linking frailty and psychiatric disorders, 

their specific functions require further investigation82. 

In summary, this study comprehensively investigates the shared genetic foundation and multi-layered 

biological mechanisms connecting frailty with three types of psychiatric disorders. Through the 

integration of genetic analysis, functional annotation, and immune cell colocalization, it offers a detailed 

understanding of the cross-mechanisms linking these complex traits. The findings provide critical 

insights into the intertwined pathophysiology of frailty and psychiatric disorders, establishing a solid 

theoretical basis for advancing future precision medicine approaches. 

Limitation 

This study has several limitations. First, the use of aggregated data, rather than individual-level data, 

limits the ability to perform more detailed population stratifications, such as gender, age, or other 

demographic characteristics. Second, the GWAS sample size for immune cells analyzed was relatively 

small, which may affect the reliability of the findings related to immune cell involvement and warrants 

cautious interpretation. Third, the analysis was restricted to individuals of European ancestry, which 

could constrain the applicability of the results to other populations or ancestries. Lastly, the relatively 

limited sample size of the frailty cohort may have reduced the statistical power, underscoring the need 

for careful consideration when interpreting the conclusions. 

Conclusions 
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Our research unveils the intricate shared genetic architecture between frailty and 636 multiple 

psychiatric disorders, including depression, anxiety, and sleep disorders. Through comprehensive 

analysis, we identified pleiotropic risk loci (rs536445, rs12635614, rs3752769, and rs3752768), key 

genes (TTC12, TMOD2, and AMT), and critical pathways such as GOCC GABAergic Synapse, GOBP 

Regulation of Synaptic Plasticity, and GOBP Arginine Metabolic Process. These findings suggest 

that these diseases may share common mechanisms involving synaptic function regulation, 

inflammatory responses, and neurotransmitter imbalances. Additionally, tissues and organs 

significantly associated with these traits—including the cerebral cortex, hypothalamus, pituitary, and 

amygdala—highlight the central roles of the nervous and endocrine systems in the shared 

pathophysiology of frailty and psychiatric disorders. Colocalization analysis further revealed that 

immune cell types, such as myeloid dendritic cells and B cells, mediate disease progression by 

regulating the inflammatory environment and HPA axis activity. Our findings provide compelling 

evidence of a significant genetic association between frailty and psychiatric disorders, offering new 

insights into their shared genetic and biological foundations and presenting important clues for future 

precision medicine strategies. 
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Appendices 

Supplementary Methods 

GWAS data QC 

We removed all non-biallelic SNPs, SNPs with chain ambiguous alleles (A/T, C/G alleles), SNPs with 

MAF <1%, and SNPs without rs IDs, duplicate SNPs, and SNPs whose alleles does not match Phase 

3 of the 1000 Genomes Project. Additionally, SNPs located in major histocompatibility complex (MHC, 

chr 6: 25–35 Mb) region were excluded from main analysis and annotations due to its complex LD 

structure. 

Pleiotropic analysis under composite null hypothesis analysis (PLACO)  

This method could detect pleiotropic signals by using summary-level association statistics between 

complex traits. Considering the potential correlation among autoimmune diseases, we calculated 

correlation matrix of Z-scores. Then a level-α IUT method was used to test pleiotropy hypothesis: H0 is 

the null hypothesis, which could be expressed as  0 00 01 02:H H H H  , and alternative hypothesis H1 

could be further expressed as:  
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The aH represents the complement of H. Disease  represents effect size of autoimmune diseases. The 

maximum of P values for testing H0 vs H1 were viewed as the final P values. 

Bayesian colocalization analysis using coloc 

The coloc package can be used to perform genetic colocalization analysis of two potentially related 

phenotypes to test whether they share common genetic causal variants in given regions. The approach 

assumes that each genetic variant is equally likely to affect gene expression or a trait, and is only 

interested in whether shared causal variants are plausible. For different combinations of the two 

phenotypes, the study offers five hypotheses: H0: No association with either trait; H1: Association with 
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autoimmune disorders, not with B-ALL; H2: Association with B-ALL, not with autoimmune disorders; H3: 

Association with autoimmune disorders and B-ALL, two independent SNPs; H4: Association with 

autoimmune disorders and B-ALL, one shared SNP. Therefore, H4 assumes that the effects of shared 

variants on two traits are independent, while high PP4 measures correlation, not causation. 

MAGMA analysis 

In MAGMA gene analysis, genetic marker data are aggregated to the gene level and converted from 

the association of test SNPs to the joint association of all markers in the test gene with the phenotype. 

The model for MAGMA gene analysis is based on the multiple linear principal component regression 

method, which uses the F test to calculate gene p-values. In order to ensure that the model is identifiable 

in the presence of highly collinear SNPs, the model projects the SNP matrix of the gene onto its principal 

component (PC). Then the PCs with very small eigenvalues were pruned, the remain PCs were viewed 

as predictor factors for phenotypes in the linear regression model. Likewise in MAGMA gene set 

analysis, individual genes are aggregated into genomes with certain biological, functional, or other 

characteristics. This aggregation has the advantage of greatly reducing the number of association tests 

that need to be performed and can detect effects consisting of multiple weak associations, greatly 

improving statistical power. 

Multi-trait colocalization analysis using HyPrColoc 

HyPrColoc is based on the similar statistical model as coloc, but unlike coloc, HyPrColoc uses summary 

statistics for a large number of traits to identify multi-traits colocalization association signals. This 

method accurately approximates the posterior probability of colocalization for a single causal variant by 

enumerating only a small number of putative causal associations (assuming that there is at most one 

causal variant per trait), avoiding repeated pairwise colocalization analyses, and identify co-localization 

signals between multiple traits efficiently and quickly. However, this method may increase the false 

negative rate and reduce the performance of identifying shared causal variants to some extent. 

Detailed information of immune cells used in HyPrColoc analysis 

The GWAS summary statistics for 731 immune traits could be publicly available in the GWAS Catalog 

(accession numbers from GCST0001391 to GCST0002121), of which 118 were absolute cell (AC) 

counts, 389 were median fluorescence intensities (MFIs) reflecting the levels of surface antigens, 32 

were morphological parameters [MP, forward scatter (FSC) and side scatter (SSC), which are 

proportional to the cell volume, and intracellular complexity and the surface texture of cells, 

respectively], and 192 were relative cell (RC) counts. This GWAS analysis was conducted based on 

3,757 European samples (57% women) to test around 22 million single nucleotide polymorphisms 

(SNPs) genotyped with high density arrays after adjusting for several covariates (i.e., sex, age, and 

age2). Finally, these SNPs were imputed with a sequence-based reference panel. 
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Supplementary Figures 

Figure S1. Manhattan plot of the PLACO results. Note: Red line represents the significance of 

5×10-8. 
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Figure S2. QQ plots for pleiotropic results performed by PLACO. 
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Figure S3. Regional plots of each colocalized locus (PP.H4 > 0.7) identified for corresponding 

trait pair (FI&MDD) by using the PLACO. Note: PP.H4 was posterior probability of H4 

calculated by coloc analysis; SNPs in LD that do not have any significant independent lead 

SNPs in the selected region are grayed out. For genes, mapped genes drawn by position 

mapping are in red; blue are unmapped protein-coding genes; dark gray are unmapped non-

coding genes. Abbreviations: FI, frailty; MDD, depression. 
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Figure S4. Regional plots of each colocalized locus (PP.H4 > 0.7) identified for corresponding 

trait pair (FI&AD) by using the PLACO. Note: PP.H4 was posterior probability of H4 calculated 

by coloc analysis; SNPs in LD that do not have any significant independent lead SNPs in the 

selected region are grayed out. For genes, mapped genes drawn by position mapping are in 

red; blue are unmapped protein-coding genes; dark gray are unmapped non-coding genes. 

Abbreviations: FI, frailty; AD, anxiety. 
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Figure S5. Regional plots of each colocalized locus (PP.H4 > 0.7) identified for corresponding 

trait pair (FI&SD) by using the PLACO. Note: PP.H4 was posterior probability of H4 calculated 

by coloc analysis; SNPs in LD that do not have any significant independent lead SNPs in the 

selected region are grayed out. For genes, mapped genes drawn by position mapping are in 

red; blue are unmapped protein-coding genes; dark gray are unmapped non-coding genes. 

Abbreviations: FI, frailty; SD, Sleep disorders. 


