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N6-methyladenosine (m6A) modification, catalyzed by methyltransferase complexes (MTCs), plays many roles in multifaceted
biological activities. As the most important subunit of MTCs, the METTL3-METTL14 complex is reported to be the initial factor that
catalyzes the methylation of adenosines. Recently, accumulating evidence has indicated that the METTL3-METTL14 complex plays a
key role in musculoskeletal diseases in an m6A-dependent or -independent manner. Although the functions of m6A modifications
in a variety of musculoskeletal diseases have been widely recognized, the critical role of the METTL3-METTL14 complex in certain
musculoskeletal disorders, such as osteoporosis, osteoarthritis, rheumatoid arthritis and osteosarcoma, has not been systematically
revealed. In the current review, the structure, mechanisms and functions of the METTL3-METTL14 complex and the mechanisms
and functions of its downstream pathways in the aforementioned musculoskeletal diseases are categorized and summarized.
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FACTS

1. The molecular mechanisms of certain musculoskeletal
diseases, such as arthritis osteoarthritis (OA), osteoporosis
(OP), osteosarcoma (OS), and rheumatoid arthritis (RA), are
intricate and ambiguous.

2. As a reversible epigenetic regulator, N6-methyladenosine
(m6A) modification catalyzed by methyltransferase com-
plexes (MTCs) is implicated in numerous human disorders,
including musculoskeletal diseases.

3. The METTL3-METTL14 complex participates in aspects of
RNA metabolism, such as RNA alternative splicing, transport,
and stability and microRNA maturation and decay.

4. The structure of the METTL3-METTL14 complex allows it to
exert its catalytic function during m6A modification.

OPEN QUESTIONS

1. What is the structure of the METTL3-METTL14 complex?
2. What are the functional roles and corresponding regulatory

mechanisms of the METTL3-METTL14 complex in musculos-
keletal diseases?

3. What clinical applications related to the METTL3-METTL14
complex exist?

INTRODUCTION
The musculoskeletal system, also named the motor system, is
mainly composed of bones and skeletal muscles and is directly
involved in the motor function of the human body [1].

Musculoskeletal disorders are increasingly recognized as a leading
cause of stress and disability in working-age adults [2]. There are
more than 100 types of musculoskeletal diseases, including
arthritis osteoarthritis (OA), osteoporosis (OP), osteosarcoma
(OS), and rheumatoid arthritis (RA). The pathogenesis of these
disorders is intricate and is far from being fully understood [3–5]. It
is generally believed that the occurrence of these musculoskeletal
diseases is closely related to multiple factors, such as environ-
mental, organic, hereditary, and epigenetic factors, including m6A
modification [5–11].
Recently, increasing attention has been given to the role of

epigenetic mechanisms, including heritable changes in gene
function without gene sequence alteration, in musculoskeletal
diseases [12, 13]. Previous studies have suggested that noncoding
RNAs such as microRNAs are the main sites of RNA epigenetic
modification [14]. New research has found that RNA m6A
modification is widely distributed in organisms and plays a
dynamic regulatory role [15]. Many studies have demonstrated
that m6A modification is involved in the occurrence and
development of musculoskeletal diseases [16, 17].
m6A, first discovered in the L cells of mammalian mice in the

1970s, is the dynamic reversible chemical modification of the
N6 site of adenosine in specific RNA sequences [18, 19]. m6A is an
internal biological marker, the deposition of which is mainly
catalyzed by methyltransferases called “writers”; demethylation
occurs under the catalysis of demethylases called “erasers”; and
marks are identified by a series of specific RNA binding proteins
called “readers”. As initiating factors, m6A writers include several
factors with methylation ability, including the METTL3-METTL14
complex, METTL5, METTL16, ZCCHC4, and certain accessory
components, such as WTAP, RBM15 and KIAA1429 [20–24].
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Among them, the METTL3-METTL14 complex is the most
interesting from a research perspective [25–28]. METTL3 and
METTL14 closely associate with each other and form a stable
heterodimer at a ratio of 1:1. The METTL3-METTL14 complex
heterodimer has improved structural stability and catalytic activity
[29–32]. With increased research into m6A modification, the
biological functions of the METTL3-METTL14 complex in muscu-
loskeletal diseases have been extensively studied [33]. This review
introduces the main features of the METTL3-METTL14 complex
and its working mechanism in m6A modification and summarizes
recent progress in understanding the role of the METTL3-METTL14
complex in certain musculoskeletal diseases, such as OP, OS, RA
and OA. Additionally, this review provides an overview of the
regulatory mechanisms of the METTL3-METTL14 complex in the
abovementioned disorders.

STRUCTURE AND WORKING MECHANISM OF THE METTL3-
METTL14 COMPLEX
As the most important factor of methyltransferases, the METTL3-
METTL14 complex was first purified from HeLa cell nuclear extracts
in 1994 [34]. The METTL3-METTL14 complex, the core of which
comprises METTL3 and METTL14, includes three interacting but
independent components that are separable under invariant
conditions [35]. The stable heterodimer automatically formed by
METTL3-METTL14 is the structural basis that underlies the ability of
methyltransferases to achieve catalytic functions such as binding
to target RNA and transferring methyl groups.

The structure of METTL3
METTL3, which is 580 amino acids in length, is primarily composed
of a zinc finger domain (ZFD), which contains two tandem CCCH-
type zinc-binding motifs connected by antiparallel β-sheets, and a
methyltransferase domain (MTD). As shown in Fig. 1A, the MTD of
METTL3, also named MTD3 (residues 357–580) is a highly
conserved open hollow cavity that is the most significant catalytic
site, and MTD3 is responsible for binding to the donor substrate
through various types of chemical bonds [32, 36]. A primary-
sequence level conserved S-adenosylmethionine (SAM) binding
site that can bind to SAM via hydrogen bonds exists on one side of
the cavity. The rest of the cavity is presumably for binding of RNA
substrates [32]. By using electron scanning, Wang and colleagues
generated clear images of the METTL3 hollow cavity combined
with SAM. The catalytic cavity is also surrounded by three main
loops: two of these loops (active site loop 1 (ASL1), which is a
partially disordered loop containing Asp395-Thr408, and active
site loop2 (ASL2), a fully ordered loop containing Arg508-Lys513)
surround the SAM-binding site. The third loop has a larger
interface that extensively contacts METTL14. This loop provides
the structural basis for proper folding and stability of the
heterodimer [32, 37, 38] (Fig. 1A).

The structure of METTL14
METTL14 is located on chromosome 4q26 and contains 12 exons.
METTL14, 456 amino acids in length, is a homolog of METTL3 with
43% homology [29, 39]. Previous studies have revealed that both
METTL3 and METTL14 have homologous methyltransferase
domains [40]. However, unlike MTD3, the catalytic cavity of the
MTD in METTL14 (named MTD14, residues 111–456) is low. Due to
the lack of residues that form hydrogen bonds with the ribose
hydroxyls of SAM, METTL14 cannot bind SAM [37, 40, 41]. Similarly,
it has been reported that METTL14 is catalytically inactive in the
METTL3-METTL14 complex because it contains a degenerate
active site that is unable to accommodate donor and acceptor
substrates [37]. This finding indicates that METTL14 contains a
nonfunctional catalytic site. Additionally, METTL14 does not have a
ZFD, which is responsible for the recognition and binding of
single-stranded RNAs containing the GGACU motif [31]. However,

MTD14, which is similar to methyltransferases of the target
recognition domain (TRD) of class I DNA n6-adenine methyltrans-
ferases, acts as a substrate-binding scaffold to enhance the
methyltransferase activity of METTL3 [39]. The two ends of
METTL14, the N-terminus and the C-terminus, have helical
extensions that are parallel to each other, pass through one face
of MTD14, and make extensive contact with MTD3 through the
interface loop and shorter helical segments of MTD3 [42] (Fig. 1A).

Mechanisms of the METTL3-METTL14 complex
As shown in Fig. 1B, MTD3 and MTD14, two methyltransferase
domains of the heterodimeric complex, maintain their conforma-
tion via various hydrophobic and polar contacts. The hollow cavity
between MTD3 and MTD14 that forms the active site is important
for binding substrate RNA [32, 43]. ZFD, which is flexible and
partially folded with MTD3, recognizes single-stranded RNAs
containing a 5’-GGACU-3’ consensus sequence, and the auxiliary
active region completes the binding to substrate RNAs [31]. On
one side of the MTD3 cavity exists a site that accommodates a
methyl donor (SAM or SAH), which cooperates with the active
region to transfer the methyl group to the adenosine of the
specific RNA motif. The important active sites of METTL14 (R245,
R249, R254, R255, K297, and R298) are involved in the formation of
a unique conformation at the contact site of the heterodimer and
are responsible for enhancing the RNA binding ability [39]. In
addition, METTL14 can directly bind to the RNA substrate by
recognizing the basic patch, which determines the specificity of
RNA sequence recognition by the heterodimer [32].
As the core methyltransferase subunit, the METTL3-METTL14

complex affects various aspects of RNA metabolism, such as RNA
alternative splicing, transport, and stability and microRNA
maturation and decay. Alternative splicing, by which the exons
of primary transcripts from genes can be combined in different
arrangements, is primarily responsible for the substantial cellular
complexity [44]. METTL3 affected the osteogenic differentiation
ability of bone marrow mesenchymal stem cells (BMSCs). Knock-
down of METTL3 in BMSCs decreased the mRNA expression of two
splice variants of vascular endothelial growth factor A (VEGFA),
vegfa-164 and vegfa-188, but did not affect the expression of
vegfa-120 [45]. A recent report showed that METTL14 is a critical
regulator of the maturation of oligodendrocyte lineage cells.
Ablation of METTL14 led to aberrant splicing of numerous RNA
transcripts in oligodendrocyte lineage cells [46].
Efficient transport of messenger RNA from the nucleus to the

cytoplasmic sites of active translation is a fundamental feature of
eukaryotes [47]. By an RT‒qPCR-based nucleocytoplasmic fractio-
nation assay, Li and colleagues found that knockdown of METTL3
facilitated the nuclear retention of TNF receptor-associated factor
6 (TRAF6) transcripts but decreased the cytoplasmic abundance of
TRAF6 mRNA during osteoclast differentiation [33].
Notably, METTL3-METTL14 complex-methylated mRNAs are

preferentially recognized by certain “readers”, such as YTHDF
members, which triggers their rapid degradation [19, 48]. The
METTL3-METTL14 complex is also involved in the regulation of the
fates of noncoding RNAs. METTL3 and METTL14 participate in the
maturation of primary (pri-)miRNAs such as miR-25-3p, pri-
miR221/222, pri-miR-1246, pri-miR-375 and pri-miR-126 in differ-
ent cancers [49–53]. Additionally, METTL3 and METTL14 control
the expression and stability of several long noncoding RNAs, such
as LINC00958, MALAT1, LINC00942 and XIST [54–57].
Interestingly, in addition to RNA metabolism, it was recently

reported that METTL3 participates in the regulation of chromatin
state and transcription. METTL3, in collaboration with YTHDC1,
decreased the stability of chromosome-associated regulatory
RNAs (carRNAs) through NEXT-mediated nuclear degradation
and ultimately changed the chromatin state and transcription
[58]. Xu and colleagues found that METTL3 was essential for the
integrity of intracisternal A particle (IAP) heterochromatin in
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mouse embryonic stem cells. Knockout of METTL3 attenuated the
abundance of various heterochromatin marks of METTL3-targeted
IAPs while upregulating IAP transcription in an m6A-dependent
manner [59].

ROLES OF THE METTL3-METTL14 COMPLEX IN
MUSCULOSKELETAL DISEASES
As prevalent disorders among populations with frequent comor-
bidities, musculoskeletal diseases are responsible for a significant
portion of the global disease burden [60, 61]. The METTL3-
METTL14 complex is extensively involved in various diseases, such
as cancers, cardiovascular disorders, neurological disorders and
musculoskeletal diseases [36, 42, 62–64]. In the following section,
we will discuss recent studies of the role of the METTL3-METTL14
complex in certain musculoskeletal diseases, such as OP, OA, RA
and OS.

The roles of METTL3 and METTL14 in osteoporosis
OP is a systemic bone disease characterized by decreased bone
mass and microarchitectural deterioration, leading to increased
bone fragility and susceptibility to fractures [65]. Recent evidence
has revealed that the METTL3-METTL14 complex regulates OP by
affecting multiple signaling axes through m6A modification
[45, 66–68].
It was discovered that the expression of METTL3 and METTL14

and the overall m6A level were decreased in the bone tissues of
three patients with osteoporosis [69]. Upregulation of METTL3
promotes bone formation in mice and facilitates osteogenic
differentiation of BMSCs via induction of m6A methylation and the
expression of several osteogenesis-associated genes, such as
RUNX family transcription factor 2 (RUNX2), aleurain-like protease
(ALP) and bone gamma-carboxyglutamate protein (BGLAP) [69].

RUNX2 is a transcription factor that plays a vital role in the
differentiation of osteoblasts, enhances bone mineralization, and
participates in various processes in OP [69, 70]. Similarly, another
study claimed that METTL3 knockdown decreased the m6A
modification level of BMP mRNA, inhibited the bone morphoge-
netic protein (BMP)/SMAD pathway, and induced pathological
features of OP [71]. The above findings suggest that the role of
METTL3 in OP is mainly achieved by its catalysis of m6A
modification of various mRNAs. Another downstream pathway
of METTL3 in OP is the parathyroid hormone (PTH)/parathyroid
hormone 1 receptor (PTH1R) signaling pathway. Wu and cow-
orkers found that knockout of METTL3 reduced the translation
efficiency of PTH1R mRNA and disrupted PTH-induced osteogenic
and adipogenic responses in MSCs in an m6A manner [72] (Fig. 2,
Table 1).
In addition to the mechanisms mentioned above, METTL3

promotes the translation of a group of m6A-containing mRNAs,
such as epidermal growth factor receptor (EGFR) and TAZ mRNAs,
by interacting with the translation initiation machinery without
the participation of m6A readers. Mechanistically, METTL3
enhances the translation of these mRNAs independently of the
activity of methyltransferases or downstream m6A readers by
recruiting eukaryotic translation initiation factor 3 (eIF3) to the
translation initiation complex [73].
The biological function of METTL14 in OP has not been well

explored. It has been reported that METTL14, as a downstream
target of miR-103-3p, can be inhibited to further suppress the
activity of osteoblasts. METTL14 can also regulate the processing
of miR-103-3p by the DiGeorge syndrome critical region gene 8
(DGCR8) microprocessor complex subunit in an m6A-dependent
manner, forming a negative feedback regulatory loop and
promoting the proliferation, differentiation and matrix mineraliza-
tion of osteoblasts. These studies also showed that METTL14 was

Fig. 1 Schematic diagram of METTL3-METTL14 complex structure. A Annotated model of the METTL3-METTL14 complex structure. The
METTL3 (purple) and METTL14 (blue) complex structure is shown. SAM (orange sticks) binds one side of the catalytic cavity. The concave space
between the MTDs is surrounded by the ASL1 loop (green), ASL2 loop (yellow), and interface loop (pink). B Proposed model for RNA
methylation by the METTL3-METTL14 complex. The substrate RNA binds to the active center composed of the METTL3-METTL4 heterodimer,
and the receptor adenine is localized in the METTL3 catalytic pocket between the ASL1 and ASL2 loops. METTL3 catalyzes the transfer of
methyl groups from SAM to the acceptor adenine. ZFD in the N-terminal region of METTL3 facilitates substrate RNA recognition.
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positively associated with m6A modification and bone formation
in older women and mice. After upregulation of METTL14 by
vector transfection, m6A and bone formation indices were
increased, but downregulation led to opposite results. This
suggests that METTL14 plays an important role in OP in an
m6A-dependent manner, but the specific mechanism needs
further study [53, 74].

The role of METTL3 in osteoarthritis
As a chronic degenerative joint condition, OA is one of the most
common joint disorders in elderly individuals [75]. The patholo-
gical processes of OA involve disturbance of articular cartilage
anabolism and catabolism, as well as degradation of the
extracellular matrix [76]. Many epigenetic mechanisms are
involved in the degeneration of articular cartilage during the
pathogenesis of OA [7]. However, the role of m6A modification in
OA has not been fully investigated.
An increased m6A modification level and upregulated METTL3

were found in fibroblast-like synoviocytes (FLSs) of patients with
OA and in destabilization of the medial meniscus (DMM) mouse
models. METTL3-mediated m6A modification attenuated the RNA
stability of autophagy-related 7 (ATG7) in a YTHDF2-dependent
manner and decreased the protein expression of ATG7, an E-1
enzyme crucial for the formation of autophagosomes, in OA FLSs.
It was also observed that knockdown of METTL3 suppressed the
expression of p16INK4a and p21, the senescence-associated
secretory phenotype (SASP) and the secretion of interleukin 1
beta (IL-1β), therefore alleviating the progression of OA in the
DMM mouse model [77].
METTL3 has also been implicated in the inflammatory response

in OA. METTL3 was downregulated in lipopolysaccharide (LPS)-
treated preosteoblast MC3T3-E1 cells. METTL3 knockdown

decreased the expression of osteogenic markers but regulated
the expression of several proinflammatory cytokines, such as IL6,
IL12, and TNF-α, by increasing the phosphorylation of members of
the MAPK signaling pathway. METTL3 knockdown promoted the
expression and stability of certain negative regulators of Smad
signaling, such as Smad7 and SMAD-specific E3 ubiquitin protein
ligase 1 (Smurf1) [78].
From another perspective, METTL3 controls degradation of the

extracellular matrix (ECM) during the progression of OA. Incon-
sistent with the findings above, Liu and associates found that
METTL3 was increased in interleukin 1 beta (IL-1β)-treated ATDC5
cells. Silencing of METTL3 via transfection of METTL3 short hairpin
RNA (shRNA) inhibited ECM degradation, as indicated by a
reduction in matrix metallopeptidase 13 (MMP-13) and collagen
type X (Coll X) but an increase in aggrecan and collagen type II
(Coll II) [79] (Fig. 3, Table 1).
To date, there is limited research on METTL14 in OA.

The role of METTL3 in rheumatoid arthritis
As the most common chronic inflammatory arthropathy, RA is
characterized by persistent synovitis, systemic inflammation, and
autoantibodies [80]. The immunopathogenesis of RA is intricate, and
multiple factors, including environmental stress, the mucosal micro-
biome, genetic factors, and epigenetic marks, are involved in RA [81].
m6A modification was recently reported to participate in RA [16].
METTL3 was upregulated in patients with RA and in LPS-

induced pTHP-1 macrophages, and elevated METTL3 was closely
associated with the C-reactive protein (CRP) level and erythrocyte
sedimentation rate (ESR), two markers of RA disease activity.
Functionally, it was demonstrated that upregulation of
METTL3 suppressed the inflammatory response of pTHP-1
macrophages by modulating the nuclear translocation of

Fig. 2 Several signaling pathways regulated by METTL3 and METTL14 in OP. METTL3 and METTL14 regulate mRNA expression in an
m6A-dependent manner and thus regulate OP processes through several signaling pathways. A:m6A; P:phosphorylation.
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phosphorylated nuclear factor kappa B (NF-κB), a classic transcrip-
tion factor involved in inflammation [82] (Table 1).
Via functional METTL3-related in vitro and in vivo assays, Shi

and colleagues found that knockdown of METTL3 suppressed the
expression of several inflammatory factors, such as MMP-3, MMP-
9, and interleukin (IL)-6, in human RA FLSs and in adjuvant-
induced arthritis (AIA) rat models. Mechanistically, researchers
have also shown that the function of METTL3 in RA is closely
related to the activation of the NF-κB pathway [83]. Therefore,
METTL3/NF-κB might be useful molecular targets in RA.

The role of the METTL3-METTL14 complex in osteosarcoma
OS is the most common primary bone cancer in children and
young adults and has a high mortality rate [84]. Due to its
malignant biological behaviors, such as fast growth and early
metastasis, the prognosis of OS is poor [85]. Recent evidence has
indicated that m6A modification, the most common epigenetic
modification, is extensively involved in multiple cancers and
diseases, including OS [17, 86]. As the most important initiator of
m6A, the METTL13-METTL14 complex participates in diverse
pathological processes of OS via different mechanisms.
Generally, METTL3 regulates OS progression by modulating the

stability of messenger RNAs (mRNAs). METTL3 was elevated in
human OS tissues and cell lines. Mechanistically, METTL3 affected
the stability of lymphoid enhancer-binding factor 1 (LEF1) mRNA
and subsequently regulated the activity of the Wnt/β-catenin
signaling pathway, ultimately controlling the malignant behaviors
of OS cells, such as proliferation, migration and invasion [87]. A
similar study indicated that METTL3 regulated OS cell epithelial-
mesenchymal transition (EMT) by regulating the stability of TRAF6
mRNA [9]. In addition, it has been reported that METTL3 also
regulates the stability of certain other mRNAs, such as ATPase
family-containing AAA domain 2 (ATAD2), tripartite motif containing
7 (TRIM7), GTP-binding protein 1 (GRG1), histone deacetylase 5
(HDAC5) and CCR4-NOT transcription complex subunit 7 (CNOT7), in
an m6A-dependent manner in OS [88–92].

In addition to mRNAs, recent evidence has indicated that
METTL3 also determines the fate of long noncoding RNAs and
circular RNAs, two major types of noncoding RNAs, in OS. METTL3
facilitates the m6A modification of differentiation antagonizing
nonprotein coding RNA (DANCR), a well-known oncogenic lncRNA,
increasing the stability of DANCR and therefore promoting the
increases in OS cell proliferation, migration and invasion induced
by DANCR [93]. In another study, Meng and colleagues revealed
that circRNA nuclear receptor interacting protein 1 (circNRIP1)
exerted oncogenic functions, such as promoting proliferation and
migration and suppressing apoptosis, by altering Forkhead box C2
(FOXC2) expression by sponging microRNA-199a (miR-199a) in OS
cells. Additionally, the researchers found that silencing METTL3
reduced the m6A modification and expression level of circNRIP1
[94].
In contrast with the findings for METTL3, recent evidence has

indicated that METTL14 is downregulated in OS [95, 96]. Func-
tional cell proliferation, motility, and apoptosis assays showed that
METTL14 acts as a tumor suppressor, inhibiting proliferation,
migration, and invasion and inducing apoptosis through caspase 3
cleavage [96] (Fig. 4, Table 1).

CONCLUSIONS AND PERSPECTIVES
An increasing number of studies have focused on the function of
the METTL3-METTL14 complex in musculoskeletal diseases such as
OP, OS, RA, and OA [97, 98]. The METTL3-METTL14 complex affects
multiple cell signaling pathways, therefore regulating cell fate by
altering the metabolism of RNAs in m6A-dependent and
m6A-independent ways [73]. Specifically, as described earlier, RA
and OA are inflammatory diseases, and in numerous studies, the
METTL3-METTL14 complex has been shown to be involved in
processes in RA and OA. The METTL3-METTL14 complex regulates
the inflammatory response in RA and OA in an m6A-dependent
manner through the Smad, MAPK and NF-κB signaling pathways
[78, 79, 82]. However, the regulatory mechanisms in RA and OA

Fig. 3 Several signaling pathways regulated by METTL3 in OA. METTL3 methylates target transcripts, resulting in m6A marks that regulate
RNA expression. TGF-β, transforming growth factor-β.
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are different. The METTL3-METTL14 complex controls the clear-
ance of inflammatory mediators by regulating the ATG7
autophagosome and promotes the progression of OA by
regulating the degradation of the extracellular matrix [77, 82].
The METTL3-METTL14 complex regulates the production of
inflammatory mediators in RA [16].
Currently, there are limitations to the treatment of many

musculoskeletal diseases, such as uncertain efficacy and harmful
side effects [99–102]. Due to its dynamically reversible nature, the
potential of interventions targeting METTL3-METTL14 complex-
mediated m6A modification is substantial. Additionally, with the
development of techniques to study RNA-modifying enzymes,
such as high-throughput sequencing and self-assembled mono-
layer desorption/ionization (SAMDI) technology, the exploration of
METTL3-METTL14-based targeted drugs may reveal promising
strategies [103]. Recently, by high-throughput docking into the
SAM-binding site and protein X-ray crystallography, Eliza and
associates identified a small-molecule inhibitor of the METTL3-
METTL14 complex named STM2457 [104]. STM2457 binds directly
to the METTL3-METTL14 complex, reducing the m6A level and
causing mRNA translation defects in human AML cell lines. The
researchers also demonstrated that pharmacological inhibition of
the METTL3-METTL14 complex in vivo extended survival in various
mouse models of AML [104]. Collectively, these findings provide
proof of concept for inhibition of the METTL3-METTL14 complex
as a disease-specific therapeutic strategy. With the progress of

relevant research, the mystery of the METTL3-METTL14 complex in
musculoskeletal disorders will likely be revealed.
In addition to its role in musculoskeletal disorders, as the key

human epitranscriptomic writer, the METTL3-METTL14 complex
also exerts vital biological functions in various malignancies,
including gastric cancer (GC), colorectal cancer (CRC), liver cancer
(LC), and pancreatic cancer (PC) [105–108]. Therefore, a deep
understanding of the molecular mechanisms of the METTL3-
METTL14 complex in different diseases is of great significance for
the early diagnosis and prognostication of patients. However, due
to the complexity and diversity of the METTL3-METTL14 complex,
applying the results of research of the METTL3-METTL14 complex
in humans remains challenging. Although strategies related to the
METTL3-METTL14 are promising, more research to explore the
roles and detailed mechanisms of the METTL3-METTL14 complex
in musculoskeletal disorders and other human diseases is needed.
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