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REVIEW

N6-methyladenosine (m6A) modification in osteosarcoma: expression, function 
and interaction with noncoding RNAs – an updated review
Yuanzhuang Zhanga*, Yeqiu Xua*, Yuxin Baoa, Yinzhou Luoa, Guanzhen Qiua, Ming Hec, Jie Lud, Jian Xub, 
Bin Chenb, and Yong Wanga

aFourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China; 
bDepartment of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; 
cDepartment of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; dDepartment of Cardiology, 
Shenyang Fourth People's Hospital, China Medical University, Shenyang, Liaoning, China

ABSTRACT
Osteosarcoma, originating from primitive bone-forming mesenchymal cells, is the most common 
malignant bone tumour among children and adolescents. N6-methyladenosine (m6A), the most 
ubiquitous type of posttranscriptional modification, is a methylation that occurs in the N6-position 
of adenosine. m6A dramatically affects the splicing, export, translation, and stability of various 
RNAs, including mRNA and noncoding RNAs (ncRNAs). Increasing evidence suggests that ncRNAs, 
especially microRNAs (miRNA), long noncoding RNAs (lncRNA), and circular RNAs (circRNAs), 
regulate the m6A modification process by affecting the expression of m6A-associated enzymes. 
m6A modification interactions with ncRNAs provide new perspectives for exploring the under
lying mechanisms of tumorigenesis and progression. In the current review, we summarized the 
expression and biological functions of m6A regulators in osteosarcoma. At the same time, the 
present review systematically elucidated the functional and mechanical interactions between m6A 
modification and ncRNAs in osteosarcoma. In addition, we discussed the effect of m6A and 
ncRNAs in the tumour microenvironment and potential clinical applications of osteosarcoma.
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Introduction

Osteosarcoma, originating from primitive bone- 
forming mesenchymal cells, is the most common 
malignant bone tumour in children and adolescents 
and usually occurs in the epiphysis of the long bones; 
therefore, osteosarcoma is characterized by rapid 
growth and fast progression [1]. There is growing 
evidence that osteosarcoma may be associated with 
cancer stem cells (CSCs), DNA repair-related gene 
defects, tumour inhibition pathways, and gene 
changes [2]. Early diagnosis of osteosarcoma 
remains difficult, and it is compelling to further 
explore the molecular mechanism of osteosarcoma 
and to discover new therapeutic targets to better 
guide the treatment of osteosarcoma.

N6-Methyladenosine (m6A) is methylation that 
occurs in the N6-position of adenosine, which is 

one of the most ubiquitous types of posttranscrip
tional modification [3]. More than 12,000 m6A sites 
have been found in more than 7000 human genes, 
which are rich in RRACH (R=G or A, H=A, C or U) 
shared sequences. These sequences usually exist in 
the termination codon and 3´ untranslated region (3 
´UTR) [4,5]. In addition, m6A modification sites can 
also exist in unique motifs of different noncoding 
RNAs (ncRNAs), including long noncoding RNAs 
(lncRNAs), circular RNAs (circRNAs), and 
microRNAs (miRNAs) [6]. As a dynamic and rever
sible modification, m6A modification is mainly regu
lated by three types of proteins: m6A 
methyltransferases (m6A writers), m6A demethy
lases (m6A erasers), and m6A-binding proteins 
(m6A readers). ‘Writers,’ also called the m6A 
methyltransferase complex (MTC), catalyse the 
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modification of m6A. Demethylases, alternatively 
named ‘erasers,’ are capable of removing methylation 
in DNA and histones. Potential m6A selective bind
ing proteins, also named ‘readers,’ are in charge of 
recognizing methylated RNAs to perform biological 
functions (Figure 1).

With the progress of sequencing technology, 
a large number of ncRNAs, such as miRNAs, 
circRNAs, and lncRNAs, have been found [7]. 
ncRNAs, with limited ability to encode proteins or 
peptides, demonstrate broad potential in gene regu
lation and tumour biology [8]. There are many m6A 
modification sites in ncRNAs (including circRNAs, 
lncRNAs, and miRNAs), and m6A can highly mod
ify ncRNAs [9]. m6A not only regulates the cleavage, 
localization, trafficking, stability and degradation of 
ncRNAs [3,10,11], but also interacts with ncRNAs 
and affects the biological functions of cells, including 
the proliferation, infiltration and metastasis of 
tumour cells; apoptosis; and chemoresistance 
[12,13]. Interestingly, ncRNAs can also target m6A- 
associated proteins during tumorigenesis and 

progression, regulate the interaction between m6A 
related proteins and downstream target mRNA tran
scripts, and control the degradation, translation and 
expression of target mRNAs [14,15]. Discussion of 
the role of m6A-ncRNA interactions in osteosar
coma could provide new directions for the diagnosis 
and treatment of osteosarcoma.

In the current review, we provide an update on 
the aberrant expression and function of m6A- 
related enzymes in osteosarcoma. Additional spe
cial emphasis has also been placed on the interac
tion of the m6A modification with regulatory 
ncRNAs in osteosarcoma, which includes the 
m6A modification on regulatory ncRNAs and the 
regulation of m6A modification by ncRNAs.

Aberrant m6A regulation in osteosarcoma

In osteosarcoma, the global abundance of m6A and 
the expression levels of its regulators (including 
writers, erasers and readers) are often dysregulated.

Figure 1. Dynamic regulation of RNA m6A levels by m6A and the known functions of m6A in the regulation of RNA metabolism. 
m6A modifications are catalysed by the methyltransferase complex consisting of METTL3 and METTL14, as well as their cofactors 
WTAP, KIAA1429 and RBM15/15B (writers). The removal of m6A modifications relies on the demethylases FTO and ALKBH5 (erasers). 
m6A modifications are functionally facilitated by the m6A binding proteins YTHDF1–3, YTHDC1–2, IGF2BP1–3, ELAV1, and HNRNPs 
(readers).
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Aberrant global m6A abundance in 
osteosarcoma

Global m6A levels in osteosarcoma are increased 
during the development of osteosarcoma, and this 
imbalance may be associated with osteosarcoma 
development and clinical outcomes.

Quantitative analysis of m6A RNA methylation 
by liquid chromatography tandem mass spectro
metry (LC‒MS/MS) revealed significantly 
increased levels of m6A RNA modification in 
osteosarcoma tissues. The level of m6A modifica
tion in osteosarcoma tissues from patients with 
lung metastases was significantly higher than that 
in patients without lung metastases [16]. 
Suggesting that m6A modification is closely 
related to poor prognosis. Similarly, at the cellular 
level, Yuan et al. demonstrated that osteosarcoma 
cells have higher m6A levels than normal osteo
blasts using m6A ELISA and immunofluorescence 
(IF) [17].

Aberrant expression of m6A regulators in 
osteosarcoma

The dynamic reversible process of m6A is mainly 
related to three types of m6A regulators: ‘writers,’ 
‘erasers’ and ‘readers.’ ‘writers,’ mainly composed of 
methyltransferase-like 3, 14 and 16 (METTL3, 
METTL14 and METTL16) and their cofactors, 
Wilms tumour 1-associated protein (WTAP), RNA 
binding motif protein 15 (RBM15), and Vir-like m6A 
methyltransferase associated (KIAA1429) [18–21]. Fat 
mass and obesity-associated protein (FTO) and alky
lation repair homolog protein 5 (ALKBH5) are the 
two m6A demethylases that have been identified so far 
[22,23]. Current m6A readers include the YT521-B 
homology (YTH) domain family (YTHDF1, 
YTHDF2, and YTHDF3), YTH domain-containing 
proteins (YTHDC1 and YTHDC2), heterogeneous 
nuclear ribonucleoprotein (HNRNP) protein families, 
eukaryotic translation initiation factor 3 (eIF3), 
Staphylococcal nuclease domain-containing protein 
1 (SND1), embryonic lethal abnormal vision 
Drosophila-like 1 (ELAVL1), and insulin-like growth 
factor-2 mRNA-binding proteins (IGF2BP1, 
IGF2BP2, and IGF2BP3) [24–27]. Aberrant m6A reg
ulators closely participate in the tumorigenesis and 
development of osteosarcoma.

To identify the functional role of m6A regula
tors in osteosarcoma, genome-wide gene expres
sion profiling was recently performed among 
mesenchymal stem cells, osteosarcoma cells, and 
osteosarcoma cell lines. It was revealed that m6A 
‘writers’ such as METTL3 and RBM15, ‘readers’ 
such as YTHDF1, YTHDF2, YTHDC1, and 
HNRNP2B1, and ‘erasers’ such as FTO were upre
gulated in osteosarcoma. Upregulated m6A regu
lators in osteosarcoma are strongly associated with 
poor survival and can be used as diagnostic bio
markers and potential targeted therapeutic targets 
in osteosarcoma [28].

Additionally, the m6A regulators that are impli
cated in osteosarcoma metastasis were further 
explored. The expression levels of mRNAs from 
osteosarcoma tumour tissues with and without 
metastasis were downloaded from TCGA and rea
nalysed by an Illumina human-6 v2.0 expression 
beadchip. Significant differential expression of 
METTL14, VIRMA, METTL3, WTAP and 
YTHDC1 was found in osteosarcoma samples 
with metastasis compared with those in osteosar
coma samples without metastasis, suggesting that 
m6A RNA regulators are involved in the metasta
sis of osteosarcoma [29]. Targeting these m6A 
regulatory proteins may inhibit the migration 
and metastasis of osteosarcoma.

MG63/DXR refers to the enrichment of 
a multidrug-resistant cell population by gradually 
increasing the concentration of doxorubicin in the 
osteosarcoma cell line MG63. In studies of the 
expression of m6A methylation-related enzymes 
in MG63/DXR cells, it was found that METTL3 
and ALKBH5 were upregulated at both the mRNA 
and protein levels, with no significant change in 
FTO, and METTL14 was upregulated at the pro
tein level, suggesting that m6A regulators play 
a regulatory role in chemoresistance [30]. 
Targeting m6A modification mediated by 
METTL3, METTL14 and ALKBH5 May be 
a promising adjuvant treatment strategy for 
patients with chemically resistant osteosarcoma.

In conclusion, in osteosarcoma cell lines and 
tissues, the global abundance of m6A and the 
expression level of its regulatory factors are often 
dysregulated, and dysregulated regulators were 
strongly associated with poor survival in osteosar
coma and mediated invasive metastasis and 
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chemoresistance in osteosarcoma, which may pro
vide a promising diagnostic biomarker and poten
tial targeted therapeutic strategy for patients with 
osteosarcoma. Regarding the cause of aberrant 
m6A regulation, it may be due to base mutations 
on mRNAs that result in the addition or loss of 
m6A sites, or environmental factors that can 
reprogram the episodic transcriptome, or dysregu
lation of the m6A machinery leading to upregula
tion of oncogenes or downregulation of tumour 
suppressor genes [31].

Biological functions of m6A regulators in 
osteosarcoma

Normal biological processes and development 
depend on maintaining appropriate levels of 
m6A modification on RNA, and malfunction of 
m6A regulators is often associated with cancer 
[32]. Here, we summarize the different regulators 
of m6A to exert biological processes in osteosar
coma (Table 1) (Figure 2).

Biological functions of m6A writers in 
osteosarcoma

METTL3 was the first identified m6A methyltrans
ferase [50]. A recent study showed that METTL3 
promoted the progression of osteosarcoma cells by 
regulating the m6A level of lymphoid enhancer 
binding factor 1 (LEF1) and activating the Wnt/β- 
catenin signalling pathway [36]. Similarly, knock
down of METTL3 suppressed the expression of 
ATPase family AAA domain containing 2 
(ATAD2), thereby inhibiting the proliferation and 
invasion ability of osteosarcoma cells [33]. In 
another study, METTL3 positively regulated TNF 
receptor-associated factor 6 (TRAF6) expression 
and promoted TRAF6-mediated metastasis of osteo
sarcoma. TRAF6 also reversed the inhibitory effect 
of sh-METTL3 on the invasion, metastasis and EMT 
of osteosarcoma cells [35]. METTL3 has also been 
reported to be involved in metabolic processes in 
osteosarcoma. Ubiquitin-specific proteases 13 
(USP13) regulates glycolytic reprogramming and 
proliferation in osteosarcoma by deubiquitinating 
METTL3 at K488. Subsequently METTL3 increases 
autophagy-related gene 5(ATG5) mRNA stabiliza
tion in an m6A-modified manner, thereby 

promoting oncogenic autophagy [39]. In addition 
to increasing the stability of mRNA, METTL3 can 
also increase the stability of lncRNA and promote 
the malignant progression of osteosarcoma. 
METTL3 was found to mediate the expression of 
differentiation antagonizing nonprotein coding 
RNA (DANCR) in osteosarcoma, which in turn 
promoted the proliferation, invasion and metastasis 
of osteosarcoma cells [51]. As reported above, 
METTL3 as an oncogenic gene mediates the prolif
eration, invasion, and metastasis in osteosarcoma.

As the most important catalytic subunit, the cat
alytic activity of METTL3 is strongly dependent on 
METTL14 [52]. Liu and associates demonstrated 
that METTL14 was expressed at low levels in osteo
sarcoma. Inhibition of METTL14 significantly pro
moted proliferation, migration, and invasion while 
promoting apoptosis in osteosarcoma cells via reg
ulation of the caspase-3 pathway [41]. 
Controversially, however, METTL14 was demon
strated to be highly expressed in osteosarcoma 
and associated with poor prognosis. METTL14 
mediates the stability and translation of MN1 
mRNA, thereby promoting the proliferation and 
metastasis of osteosarcoma cells [16]. Some emer
ging evidence has also shown that METTL14 works 
together with METTL3 to reduce the expression of 
DIRAS1 by regulating the ERK pathway and enhan
cing proliferation, invasion, and migration while 
blocking apoptosis in osteosarcoma [53].

WTAP, which lacks methylation activity, always 
interacts with the METTL3-METTL14 complex and 
affects the deposition of m6A in cells [18]. The 
absence of WTAP reduces the binding ability of 
METTL3 to RNAs, indicating that WTAP is essential 
for the recruitment of the m6A methyltransferase 
complex [3]. As a splicing factor in mammals, 
WTAP is reported to be highly expressed in osteo
sarcoma, and WTAP is related to the poor prognosis 
of osteosarcoma patients. Mechanistically, WTAP 
targets and regulates the 3´UTR of homeobox con
taining 1 (HMBOX1), and then HMBOX1 activates 
the PI3K/Akt signalling pathway to regulate the pro
liferation and metastasis of osteosarcoma [40]. For 
ncRNAs, WTAP is capable of modifying the methy
lation of the lncRNA FOXD2 adjacent opposite 
strand RNA 1 (FOXD2-AS1), which accelerates the 
proliferation, migration and metastasis of osteosar
coma cells in vitro and in vivo [54].
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RBM15 is a member of the SPEN (split-end) 
protein family and interacts with RNA by bind
ing to spliceosomal components [55]. A recent 
study reported that circ-CTNNB1 and RBM15 
interact through the RRM1 structural domain to 
mediate the m6A modification of hexokinase 2 
(HK2), glucose-6-phosphate isomerase (GPI) and 

phosphoglycerate kinase 1 (PGK1) and promote 
the aerobic glycolytic process in osteosarcoma 
cells [56]. The interaction between circ- 
CTNNB1 and RBM15 relies on the RRM1 
domain, and targeting the RRM1 domain pro
vides a new direction for the treatment of 
osteosarcoma.

Table 1. Roles of m6A regulators in osteosarcoma.

m6A 
regulators Type

m6A 
component

Targeted 
genes/ 
signal 

pathway Function Mechanisms Reference

METTL3 writer oncogene ATAD2 Proliferation↑, invasion and 
metastasis↑, apoptosis↓

METTL3 knockdown inhibited the protein expression of 
ATAD2 in osteosarcoma cells

[33]

oncogene DRG1 Proliferation↑, invasion and 
metastasis↑, colony formation 
abilities↑, apoptosis↓

METTL3 knockdown impaired the stability of DRG1 
mRNA

[34]

oncogene TRAF6 Proliferation↑, invasion and 
metastasis↑, apoptosis↓

METTL3 can increase TRAF6 transcript levels [35]

oncogene LEF1/Wnt/ 
β-catenin

Proliferation↑, invasion and 
metastasis↑

METTL3 silence decreased the m6A methylation and 
total mRNA level of LEF1, then inhibited the activity of 
Wnt/β-catenin signalling pathway y

[36]

oncogene CONT7 Proliferation↑, invasion and 
metastasis↑

METTL3 could promote the expression of pre-CONT7 
and mature mRNA

[37]

oncogene TRIM7/ 
BRMS1

Chemoresistance↑, invasion 
and migration↑

METTL3 modifies the 3 ’- UTR region of TRIM7, TRIM7 
ubiquitinates the k184 site of BRMS1

[38]

oncogene ATG5 autophagy↑ METTL3 increasesATG5 mRNA stabilization [39]
WTAP writer oncogene HMBOX1/ 

PI3K/AKT
Proliferation↑, migration and 
invasion↑

WTAP repressed HMBOX1 expressed with WTAP- 
dependent m6A modification at the 3´UTR of HMBOX1

[40]

METTL14 writer oncogene MN1 Proliferation↑, migration, and 
invasion↑

METTL14 enhances MN1 mRNA stability and promotes 
its translation

[16]

tumor 
suppressor

Caspase-3 Proliferation↓, migration, and 
invasion↓, apoptosis↑

METTL14 can make caspase-3 forms lysed caspase-3 [41]

tumor 
suppressor

TRIM7/ 
BRMS1

Chemoresistance↑, invasion, 
and migration↑

METTL14 modifies the 3 ’- UTR region of TRIM7, TRIM7 
ubiquitinates the k184 site of BRMS1

[38]

METTL16 Writer oncogene VPS33B Proliferation↑, migration, and 
invasion↑

METTL16 facilitating the degradation of VPS33B [42]

KIAA1429 Writer oncogene JAK2/STAT3 Proliferation↑, migration, and 
invasion↑

/ [43]

FTO eraser oncogene DACT1/Wnt growth↑, metastasis↑ reducing the RNA stability and protein expression of 
DACT1

[44]

oncogene KLF3 Proliferation↑, migration, and 
invasion↑

FTO-induced decay of KLF3 mRNA [45]

ALKBH5 eraser oncogene USP22/ 
RNF40

cell-cycle↑, replication↑, and 
DNA damage repair↑

ALKBH5 destabilizes USP22 and RNF40 [46]

oncogene SOCS3 cell-cycle↓, Proliferation↓, and 
apoptosis↑

ALKBH5 enhances SOCS3 mRNA stability [47]

YTHDF1 reader oncogene YAP Proliferation↑, invasion, and 
metastasis↑, colony-formation 
abilities↑, apoptosis↓

YTHDF1 can promote the recognition and translation 
of methylated YAP transcripts

[17]

oncogene CONT7 Proliferation↑, migration, and 
invasion↑

YTHDF1 promote CONT7 transcription [37]

YTHDF2 reader Tumor 
suppressor

TRIM7 Chemoresistance↑, invasion, 
and migration↑

Knocking down YTHDF2 increased the mRNA level and 
stability of TRIM7

[38]

YTHDF3 reader oncogene PGK1 proliferation↑, and aerobic 
glycolysis↑

YTHDF3 enhances the stability of PGK1 mRNA [48]

IGF2BP1 reader oncogene ERRα ATP production↑, glucose 
depletion↑, lactate 
production↑, and Dox 
resistance↑

IGF2BP1 enhances the stability of ERRα mRNA [49]

IGF2BP2 reader oncogene MN1 Proliferation↑, invasion, and 
metastasis↑

IGF2BP2 promotes MN1 translation [16]

ELAVL1 reader oncogene DRG1 Proliferation↑, invasion, and 
metastasis↑

ELAVL1 mediates the stability of DRG1 mRNA [34]
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Recent research has identified METTL16 as 
a crucial m6A methyltransferase that plays 
a significant role in embryonic development and 
maintaining S-adenosylmethionine (SAM) balance 
[57]. According to Cheng et al., METTL16 is 
highly expressed in osteosarcoma. It is responsible 
for promoting tumour growth and metastasis by 
facilitating the degradation of vacuolar protein 
sorting protein 33b (VPS33B) mRNA [42]. 
Limited studies have been conducted on the role 
of METTL16 in cancer, and this study provides 
a new direction for treating osteosarcoma.

KIAA1429, a scaffold connecting the catalytic 
core components METTL3 and METTL14, is 
also up-regulated in osteosarcoma [58]. 
KIAA1429 promotes osteosarcoma proliferation, 
invasion, and migration through the JAK2/ 
STAT3 signalling pathway [43]. However, 
whether the interaction between KIAA1429 and 
the JAK2/STAT3 signalling pathway is in an 
m6A-modified manner has yet to be determined 
and requires more in-depth studies.

Biological functions of m6A “erasers” in 
osteosarcoma

FTO, the first identified m6A demethylase, located 
on chromosome 16, can catalyse the demethyla
tion of m6A in a ferrous iron-dependent manner 
[22]. It has been reported that FTO has higher 
expression in osteosarcoma tissue, where it can 
mediate the m6A demethylation of Dapper1/ 
Dpr1 (DACT1), thereby reducing the RNA stabi
lity and protein expression of DACT1 and pro
moting the growth and metastasis of osteosarcoma 
through the DACT1/Wnt signalling axis [44]. In 
another study, FTO regulated Krüppel-like factor 3 
(KLF3) expression in an m6A-dependent manner, 
reduced the stability of KLF3 mRNA, promoted 
the proliferation and invasion of osteosarcoma 
cells, and inhibited their apoptosis [45].

ALKBH5 is an m6A-specific demethylase that 
can directly abrogate m6A modification of ade
nosine [23]. In one study, the protumorigenic 
function of ALKBH5 was mediated by regulating 

Figure 2. METTL3 regulates osteosarcoma biology by acting on TRAF6, ATAD2 and LEF1. METTL14 regulates osteosarcoma biological 
processes by acting on MN1 and caspase-3. WTAP regulates osteosarcoma biological processes through HMBOX1. METTL3, METTL14 
and YTHDF regulate osteosarcoma biological processes through TRIM7. FTO regulates osteosarcoma biological processes through 
KLF3 and DACT1. ALKBH5 regulates the biological process of osteosarcoma through SOCS3 and USP22/RNF40. YTHDF1 regulates the 
biological process of osteosarcoma through CONT7. ELAVL1 regulates the biological process of osteosarcoma through DRG1.
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m6A of histone deubiquitination ubiquitin- 
specific peptidase 22 (USP22) and ubiquitin ligase 
RING finger protein 40 (RNF40). Silencing 
ALKBH5 makes the mRNA of USP22 and 
RNF40 unstable, thus leading to decreased gene 
expression related to the cell cycle, replication 
and DNA damage repair in osteosarcoma cells 
[46]. ALKBH5 upregulated the expression of 
plasmacytoma variant translocation 1 (PVT1) 
via inhibition of its degradation, therefore pro
moting proliferation and tumour growth in 
osteosarcoma [59]. Controversially, another 
study claimed that ALKBH5, acting as a tumour 
suppressor in osteosarcoma, was downregulated 
and inversely controlled cell growth, migration 
and invasion, triggering cell apoptosis by altering 
the m6A methylation levels of pre-miR-181b-1 
and Yes1-associated transcriptional regulator 
(YAP) mRNA [17]. In addition, ALKBH5 can 
also increase suppressor of cytokine signalling-3 
(SOCS3) expression through an m6A-YTHDF2- 
dependent mechanism to inactivate the signal 
transducer and activator of transcription 3 
(STAT3) pathway, which in turn inhibits cell 
proliferation and the cell cycle and promotes 
apoptosis in osteosarcoma [47].

Biological functions of m6A “readers” in 
osteosarcoma

YTH family proteins are important molecules in 
m6A related epigenetic cancers. Various studies 
have shown that different YTH proteins play 
different roles in tumour development. 
However, there is still controversy over whether 
it is an oncogene or a tumour suppressor gene 
[60]. In a recent study, it was demonstrated that 
YTHDF1 was upregulated in osteosarcoma tis
sues and cell lines. YTHDF1 promotes the trans
lation of CCR4-NOT transcription complex 
subunit 7 m(CONT7) in an m6A-dependent 
manner and can promote the proliferation, 
migration and invasion abilities of osteosarcoma 
cells through the METTL3-CONT7-YTHDF1 
axis [37]. Previous studies have found that 
YTHDF2 can mediate RNA degradation, which 
has been confirmed in osteosarcoma [38]. 
Knockdown of YTHDF2 increase the mRNA 
level of tripartite motif containing 7 (TRIM7) 

in osteosarcoma cells, prolong the half-life of 
TRIM7 mRNA in HOS and MG63 osteosarcoma 
cells, and then mediate the invasion and metas
tasis of osteosarcoma [38]. YTHDF3, is also 
highly expressed in osteosarcoma. YTHDF3 
enhances the stability of PTEN directly interacts 
with phosphoglycerate kinase 1 (PGK1) mRNA 
in an m6A-dependent manner, promoting the 
proliferation and aerobic glycolysis of osteosar
coma cells [48]. Similarly, YTHDC1 expression 
levels are increased in osteosarcoma. 
Overexpression of YTHDC1 reversed the inhibi
tion of RNA and protein levels of 3-phosphoi
nositide-dependent protein kinase 1 (PDPK1) by 
miR-451a, which in turn promoted the prolifera
tion, invasion, metastasis and EMT of osteosar
coma [61]. Overall, targeting the YTH domain is 
a new direction for targeted treatment of 
osteosarcoma.

IGF2BPs have been reported to enhance mRNA 
stability and mediate translation in an m6A depen
dent manner [27]. In osteosarcoma, IGF2BP1 
binds to the oestrogen-related receptor alpha 
(ERRα) 3´-UTR in an m6A manner, enhancing 
mRNA stability, which in turn leads to ATP pro
duction, glucose depletion, lactate production, and 
Doxorubicin (Dox) resistance in osteosarcoma 
cells [49]. Targeting glucose metabolism through 
the IGF2BP1/ERRα axis could be a potential ther
apeutic strategy for overcoming Dox resistance in 
osteosarcoma.

ELAVL1 is one of the most abundant mRNA 
binding proteins in eukaryotic cells, and ELAVL1 
can bind to the AU-rich elements in mRNA [62]. 
Developmentally regulated GTP binding protein 1 
(DRG1), a tumour initiator, increases cell viability 
while inhibiting apoptosis in osteosarcoma. 
ELAVL1, which works cooperatively with 
METTL3, increases the stability of DRG1 mRNA 
via m6A modification and indirectly upregulates 
the protein level of DRG1 [34].

SND1 is a newly discovered m6A reader. Recent 
studies have shown that SND1 can bind to 
circ0024831. Overexpression of SND1 reverses 
the negative regulatory effect of circ0024831 on 
osteosarcoma and promotes the progression of 
osteosarcoma [63].

In conclusion, m6A regulators can act as both 
oncogenes and tumour suppressors in osteosarcoma. 
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Both increased and decreased levels of modified 
m6A may promote proliferation, invasion and 
metastasis, apoptosis and chemoresistance in osteo
sarcoma, the exact mechanism of which is unclear 
and may be related to different targets or signalling 
pathways.

Mutual regulation between m6A and ncRNA 
in osteosarcoma

An increasing number of studies have reported that 
m6A interacts with ncRNAs that are closely related 
to the occurrence and development of osteosarcoma 
(Table 2) (Figure 3), and the results are as follows.

Mutual regulation between m6A and miRNA in 
osteosarcoma

miRNAs are small and abundant ncRNAs, 
approximately 20 nucleotides in length, involved 
in gene silencing or posttranscriptional gene 
expression regulation [66]. During primary 
miRNA processing, DiGeorge syndrome critical 
region 8 (DGCR8) is essential to initiate miRNA 
maturation. m6A modification promotes 
miRNA biosynthesis mainly by affecting the 
integration between DGCR8 and pri-miRNA 
[67]. miRNAs also have the ability to affect 
m6A levels involved in diverse biological pro
cesses. Modulation of the expression of the 

Table 2. Mutual regulation between m6A and ncRNA in osteosarcoma.

ncRNA
m6A 

component
Roles in 

osteosarcoma Interplay
Downstream 

targets Function Mechanism Reference

miRNA miR-181b- 
5p

ALKBH5/ 
YTHDF2

Tumor 
suppressor

ALKBH5/ 
YTHDF2 

regulate miR- 
181b-5p

YAP Proliferation↓, 
invasion, and 
metastasis↓, colony- 
formation abilities↓, 
apoptosis↑

YTHDF2 recognizes and 
degrades pre-miR-181b-1 
demethylated by ALKBH5

[17]

miR − 451a YTHDC1 Oncogene miR − 451a 
target 
YTHDC1

Akt/mTOR 
signalling 
pathway

Proliferation↑, 
invasion, and 
metastasis↑

miR-451a-mediated YTHDC1 
stabilizes PDPK1 mRNA via 
the m6A-dependent 
regulation

[61]

miR-766 YTHDF2 Oncogene miR-766 
target 
YTHDF2

/ Proliferation↑, 
invasion, and 
metastasis↑

circ_0001105 may act as 
a ceRNA of miR-766 to 
relieve the repressive effect 
of miR-766 on its target 
YTHDF2.

[64]

circRNA circNRIP1 METTL3 Oncogene METTL3 
regulate 
circNRIP1

FOCX2 Proliferation↑, 
invasion, 
metastasis↑, and 
apoptosis↓

circNRIP1 contributed to 
FOXC2 expression by 
sponging miR-199a

[65]

circ- 
CTNNB1

RBM15 Oncogene circ-CTNNB1 
regulate 
RBM15

Proliferation↑, 
invasion, 
metastasis↑, 
apoptosis↓

circ-CTNNB1 and RBM15 
interact through the RRM1 
structural

[56]

circ_ 
0001105

YTHDF2 Tumor 
suppressor

circ_0001105 
target 
YTHDF2

miR-766 Proliferation↓, 
invasion, and 
metastasis↓

circ_0001105 may act as 
a ceRNA of miR-766 to 
relieve the repressive effect 
of miR-766 on its target 
YTHDF2.

[64]

circ0024831 SND1 Oncogene circ0024831 
target SND1

COX-2/PGE2 Proliferation↑ SND1 can recognize m6A- 
modified mRNA and 
regulate target mRNA 
stability.

[63]

lncRNA DANCR METTL3 Oncogene METTL3 
regulate 
DANCR

/ Proliferation↑, 
invasion, and 
metastasis↑

METTL3 contributes to 
progression by increasing 
DANCR mRNA stability via 
m6A modification

[51]

PVT1 ALKBH5/ 
YTHDF2

Oncogene ALKBH5/ 
YTHDF2 
regulate PVT1

/ Proliferation↑ ALKBH5 demethylates PVT1, 
which is subsequently 
recognized by YTHDF2 and 
inhibits its degradation

[59]

FOXD2-AS1 WTAP Oncogene WTAP 
regulate 
FOXD2-AS1

FOXM1 Proliferation↑, 
invasion and 
metastasis↑

WTAP enhanced the stability 
of FOXD2-AS1

[54]
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miRNA biogenesis enzyme Dicer or miRNA can 
alter the m6A abundance on their target tran
scripts [68].

In osteosarcoma, m6A promotes pre-miRNA 
processing and maturation. A recent study found 
that pre-miR-181b-1 could be methylated by 
ALKBH5, which in turn affected its maturation 
in the cytoplasm. Overexpression of ALKBH5 
decreased the expression of pre-miR-181b-1 and 
miR-181b-5p in osteosarcoma cells. ALKBH5 acts 

as a tumour suppressor and inhibits the prolifera
tion, invasion and metastasis of osteosarcoma 
through the pre-miR-181b-1/miR-181b-5p/YAP 
axis [17].

In addition, miRNAs modulate the m6A abun
dance on their target transcripts in osteosarcoma. In 
the latest research report, miR-451a was found to 
exert an inhibitory effect in osteosarcoma. 
Overexpression of miR-451a was found to signifi
cantly reduce the expression of YTHDC1. YTHDC1 

Figure 3. Mutual regulation between m6A and ncRNA in osteosarcoma. (a) ALKBH5 weakens the m6A methylation modification of 
pre-miR-181b-1 and enhances the expression levels of both pre-miR-181b-1 and miR-181-5p. YTHDF2 recognizes pre-miR-181b-1 
and enhances its stability, and YTHDF1 recognizes downstream YAP and promotes its translation, together regulating osteosarcoma 
progression. miR-451a regulates osteosarcoma progression by activating the AKT/mTOR pathway through regulation of YTHDC1- 
mediated m6A methylation. (b) pre-mRNA forms circRNA by back splicing. circ_0001105 regulation of osteosarcoma progression by 
sponging miR-766 and activating YTHDF2 expression. METTL3 enhances circNRIP1 expression through m6A modification, and 
circNRIP1 regulates osteosarcoma progression by sponging miR-199a to promote FOXC2 expression. circ0024831 directly binds to 
the tudor structural domain of SND1, blocking the recognition of m6A-modified RNA by SND1 and regulating osteosarcoma 
progression. circ-CTnNB1 interacts with RBM15 and subsequently promotes the expression of HK2, GPI and PGK1 through m6A 
modification to regulate osteosarcoma progression. (c) ALKBH5 inhibits the degradation of PVT1 and inhibits the binding of YTHDF2 
to PVT1, regulating osteosarcoma progression. WTAP increases the stability of FOXD2-AS1 and regulates osteosarcoma progression. 
METTL3 increases the stability of DANCR and regulates osteosarcoma progression.
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regulates the methylation of 3-phosphoinositide- 
dependent protein kinase 1 (PDPK1), a downstream 
target gene of miR-451a. miR-451a-mediated 
YTHDC1 regulates the stability of PDPK1 mRNA 
through m6A dependence, thereby inhibiting the pro
liferation, invasion, metastasis and EMT of osteosar
coma [61].

In summary, m6A-miRNA interactions have 
been found to regulate osteosarcoma progression. 
m6A modifications affect osteosarcoma by influ
encing miRNA biosynthesis. miRNAs can also 
regulate the abundance of m6A on their target 
transcripts to influence target genes, thereby reg
ulating osteosarcoma progression.

Mutual regulation between m6A and circRNA in 
osteosarcoma

circRNAs are novel endogenous ncRNAs that are 
usually generated by pre-mRNA back-splicing, so 
they are circRNAs that lack 3´ and 5´ ends [69]. 
Emerging evidence suggests that m6A modifica
tion promotes the cytoplasmic export, translation, 
and degradation of circRNAs [70–72]. In addition, 
dysregulation of circRNAs also affects m6A levels 
[73]. Moreover, circRNAs act as miRNA sponges 
to competitively bind with miRNAs and affect 
their activities and the expression of their down
stream target genes, which in turn indirectly reg
ulate m6A modification [74].

m6A modification of circRNAs is crucial in the 
occurrence and development of osteosarcoma. 
Meng concentrated on the functional role of 
circNRIP1 in osteosarcoma. They found that 
circNRIP1 was upregulated in osteosarcoma tis
sues. Knockdown of circNRIP1 inhibited prolifera
tion and metastasis while promoting apoptosis in 
osteosarcoma cells. They also revealed that 
METTL3 could elevate the expression level of 
circNRIP1 through m6A modification. Further 
analysis revealed that METTL3-induced 
circNRIP1 exerted an oncogenic role in osteosar
coma by sponging miR-199a [65].

In addition, circRNAs regulate m6A modifica
tion. A recent study revealed that the nanomaterial 
circ0024831 could directly bind to the Tudor 
domain of SND1 in the cytoplast to block the 
recognition of m6A-modified RNA by SND1 and 
inhibit the occurrence and development of 

osteosarcoma [63]. circ-CTNNB1 is highly 
expressed in osteosarcoma. circ-CTNNB1 regu
lates the m6A modification of aerobic glycolytic 
genes through direct binding to RBM15, leading to 
more stable mRNA and activation of target genes 
[56]. Simultaneous, circ_0001105 overexpression 
can significantly reduce the migration and inva
sion ability of osteosarcoma cells. Further analysis 
found that circ_0001105 acted as a sponge of miR- 
766 to alleviate the inhibitory effect of miR-766 on 
its target YTHDF2 and thus regulate the progres
sion of osteosarcoma [64].

In conclusion, m6A modification can regulate 
the development of osteosarcoma through 
circRNA – miRNA–mRNA, and circRNAs act as 
miRNA sponges that can also affect m6A regula
tory proteins. Additionally, circRNAs can bind 
directly to m6A-related proteins, which in turn 
can affect the m6A levels of their target genes.

Mutual regulation between m6A and lncRNA in 
osteosarcoma

lncRNAs generally refer to transcripts with 
a length of more than 200 nucleotides that cannot 
encode proteins [66]. lncRNAs, interacting with 
other molecules, participate in histone modifica
tion, regulation of gene transcription and transla
tion, RNA stability, RNA splicing and other 
processes [75]. m6A methylation can act as an 
RNA structural switch, modulating the structure 
of RNA to affect RNA‒protein interactions [10]. 
m6A methylation is also able to participate in the 
lncRNA-mediated ceRNA model to regulate the 
activity and biological function of miRNAs [76]. 
In addition, m6A methylation can promote 
X inactivation-specific transcript (XIST)-mediated 
gene silencing [77]. Previous research has shown 
that lncRNAs interact with m6A to participate in 
the progression of osteosarcoma.

lncRNA PVT1 is a functional lncRNA with car
cinogenic effects [78]. It was reported that 
ALKBH5 was upregulated in osteosarcoma tissues 
and cells. ALKBH5 upregulated the expression of 
PVT1 via inhibition of its degradation, therefore 
promoting proliferation and tumour growth in 
osteosarcoma [59]. Another study showed that 
lncRNA FOXD2 adjacent opposite strand RNA 1 
(FOXD2-AS1) accelerated osteosarcoma cell 
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migration, proliferation and tumour growth 
in vitro and in vivo. An m6A modification site 
was identified on the 3´UTR of FOXD2-AS1, and 
WTAP was able to act on this site to promote 
methylation modification, which in turn enhanced 
the stability of FOXD2-AS1 transcripts and subse
quently regulated downstream target Forkhead 
box M1 (FOXM1) mRNA and promoted osteosar
coma progression [54]. In addition, there is also 
evidence that lncRNA DANCR is a potential target 
of METTL3. Silencing METTL3 can inhibit the 
expression of DANCR in osteosarcoma. Further 
analysis showed that METTL3 mediates the stabi
lity of DANCR and then regulates the prolifera
tion, invasion and metastasis of osteosarcoma 
cells [51].

In general, the regulatory mechanism between 
m6A and lncRNAs in osteosarcoma is that m6A 
modification regulates the stability and degrada
tion of lncRNAs.

m6A and ncRNA in the osteosarcoma 
microenvironment

The tumour microenvironment (TME), which is 
governed by the intrinsic mechanisms of tumor
igenesis and epigenetic modification, has 
become a research hotspot in recent years. The 
TME can be described by hypoxia, metabolic 
dysregulation, immune escape and chronic 
inflammation [79]. m6A with ncRNAs playing 
a role in the osteosarcoma TME has also been 
reported.

m6A with ncRNAs can regulate the osteosar
coma glycolytic process, causing metabolic dysre
gulation of tumour microenvironment. In 
osteosarcoma, circ-CTNNB1 interacted with 
RBM15 through the RRM1 domain and increased 
the m6A levels of the target genes GPI, hK2 and 
PGK1, which in turn drove the osteosarcoma gly
colytic process by increasing glucose uptake, lac
tate production and ATP levels in 143B and MG- 
63 cells [56].

m6A and ncRNA participate in tumour immunity 
in osteosarcoma. In one study, 88 osteosarcoma 
samples were extracted from the TCGA database 
and divided into two subgroups: metastatic (22 spe
cimens) and nonmetastatic (65 specimens). A total 
of seven m6A-associated lncRNAs (including TNS1- 

AS1, WWC2-AS1, TFPI2-DT, LINC01474, 
LINC00910, LINC01982 and LINC00538) were 
screened and were closely associated with the prog
nosis of osteosarcoma patients. TNS1-AS1 and 
TFPI2-DT were found to be positively correlated 
with memory B cells and naïve B cells. LINC01474 
had a positive correlation with CD8 T cells; however, 
LINC00910 was negatively related to CD8 T cells. 
Moreover, LINC00538 was positively correlated with 
resting dendritic cells and negatively linked to acti
vated dendritic cells in our results. m6A-associated 
lncRNAs are closely associated with the immune 
microenvironment of osteosarcoma tumours and 
may influence tumour occurrence and progression 
[80]. These findings reveal new directions in the role 
of m6A and lncRNA in the immune microenviron
ment of osteosarcoma and demonstrate that m6A 
modification may be a potential therapeutic target 
for anti-tumour immunotherapy.

Tumour microenvironment is still the focus of 
cancer research. Many studies have demonstrated 
that ncRNAs are key regulators of the osteosar
coma microenvironment. For example, miR-21 
can regulate the tumour microenvironment in 
osteosarcoma by targeting specific molecules in 
tumour cells, endothelial cells [81]. However, 
only a few studies have focused on the function 
of m6A modified ncRNA in tumour microenvir
onment. It is possible that single-cell sequencing 
technology is used to scrutinize the m6A-modified 
ncRNAs in osteosarcoma microenvironment.

Clinical implications of m6A and lncRNA in 
osteosarcoma

Numerous studies have shown that m6A regula
tory factors are closely associated with clinical 
features and chemotherapy resistance in osteosar
coma. Dysregulated m6A regulators may serve as 
prognostic markers and potential therapeutic tar
gets for osteosarcoma. Recent studies have found 
that RBM15 is highly expressed in osteosarcoma, 
while the expression level of RBM15 is negatively 
correlated with the drug sensitivity of Denileukin 
Diftitox Ontak [82]. It is possible to determine the 
sensitivity of osteosarcoma patients to Denileukin 
Diftitox Ontak by testing the expression level of 
RBM15. FTO is upregulated in osteosarcoma tis
sues, and targeting FTO inhibits osteosarcoma 
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growth and metastasis. Entacapone, a traditional 
drug used for treating Parkinson’s disease, can 
inhibit the malignant progression of osteosarcoma 
by inhibiting the FTO/DACT1 axis [44,83]. 
Therefore, FTO is a potential biomarker for osteo
sarcoma, and the FTO inhibitor entacapone has 
the potential clinical use as a therapeutic agent for 
osteosarcoma. In another study, the knockdown of 
YTHDF2 increased the expression of TRIM7 and 
increased the resistance of osteosarcoma to adria
mycin and methotrexate treatment [38]. DNA 
damage repair proteins are essential players in 
radio-chemotherapy resistance, and the expression 
of these proteins is closely related to the m6A 
modification [84,85]. METTL3 plays an essential 
role in the UV-induced DNA damage response in 
osteosarcoma cells. The knockdown of METTL3 
results in delayed repair of UV-induced cyclobu
tene pyrimidine dimers and increased sensitivity 
to radiation [86]. Abnormal expression of m6A 
regulatory factors in patients’ tissues, cells, plasma 
and exosomes, may serve as biomarkers indicative 
of osteosarcoma cellular characteristics, providing 
an early and non-invasive method for the detec
tion of osteosarcoma and offering new insights 
into useful targets for the diagnosis, treatment 
and prognosis of osteosarcoma.

The interaction between m6A modification and 
ncRNA may be a breakthrough for targeted osteo
sarcoma treatment. m6A modification tends to 
occur in a subset of RRACH motifs, and targeting 
the shared sequence, RRACH may block the bind
ing of m6A to ncRNAs [14]. With the development 
of CRISPR technology, many editing systems tar
geting m6A have emerged. In CRISPR/Cas9 m6A 
editing systems, fusion proteins of METTL3 and 
METT14 catalytic structural domains (M3-M14) 
may be tagged to the N-terminus of RNAs targeting 
dCas9 mutants, and the dCas9-M3-M14 complex is 
targeted to specific RNA sequences by sgRNA and 
PAM antisense oligomers (PAMers). In addition, 
RNA targeting dCas9 May be fused to the m6A 
demethylase FTO or ALKBH5 to eliminate site- 
specific m6A modifications. Setting the m6A mod
ification on the 3´ UTR of actin beta (ACTB) 
mRNA leads to RNA degradation, and removing 
the m6A modification at A2577 of Metastasis 
Associated Lung Adenocarcinoma Transcript 1 
(MALAT1) leads to structural changes and alters 

the interaction with the RNA-binding protein 
hnRNPC [87,88]. m6A modification of the 
RRACH motif of PVT1 by ALKBH5 promotes the 
proliferation and invasive metastasis of osteosar
coma cells [59]. The m6A motif of WTAP is 
GGACU, which matches the candidate m6A mod
ification site of FOXD2-AS1 and improves FOXD2- 
AS1 stability, which in turn accelerates the progres
sion of osteosarcoma [54]. Therefore, applying 
CRISPR technology to target common sequences 
where m6A bindings to ncRNAs increases or 
decreases the level of m6A modified scripts, affect
ing downstream target genes and regulations of the 
biological functions of osteosarcoma cells. As 
potential targets, ncRNAs offer new possibilities 
for the clinical treatment of osteosarcoma through 
association with m6A modifications.

Conclusion and perspectives

Over the past decades, m6A modifications have 
been demonstrated to be present in DNA, RNA, 
and proteins and have been associated with the 
biological properties of a variety of malignant 
tumours, such as gastric cancer, colon cancer, 
lung cancer, and osteosarcoma [89,90]. In osteo
sarcoma, dysregulation of global m6A levels and 
the expression of m6A regulators (writers, erasers, 
and readers) may be associated with metastasis, 
drug resistance, and prognosis in osteosarcoma 
patients [15]. Benefiting from emerging technolo
gies and bioinformatics analysis, an increasing 
number of m6A-modified ncRNAs have been 
identified, annotated, and functionally predicted. 
In osteosarcoma, modification of miRNAs by m6A 
mainly regulates their maturation process, modifi
cation of lncRNAs regulates stability and degrada
tion, and modification of circRNAs can affect the 
circRNA-miRNA-mRNA axis. ncRNAs can also 
modulate m6A modification during posttranscrip
tional regulation and mediate the expression of 
m6A regulators. ncRNAs can bind to m6A regu
lators and participate in the interaction of m6A 
regulators with their target RNAs.

Notably, METTL14 and ALKBH5 have been 
reported as oncogenes and suppressor genes in 
osteosarcoma, which is transitional. This phenom
enon has also been reported in other cancers. In 
colorectal cancer, METTL3 enhances MYC 
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expression in an m6A IGF2BP1-dependent man
ner, while in another study, METTL3 modified the 
p38/ERK pathways and played a tumour suppres
sive role [91,92]. The dual roles of m6A regulators 
may be due to the different origins of tumour 
tissues, and tumour tissues with different grades 
and stages may have different expression levels. 
Meanwhile, m6A binds to different downstream 
targets, and the functional impact on downstream 
processes may be highly heterogeneous [93]. In 
addition, m6A modification is a dynamic and 
reversible process, and different detection time 
points may lead to inconsistent results. m6A reg
ulators act in tumours through different mechan
isms of action, and more convincing mechanisms 
of action need to be explored.

Although m6A modification is widely present in 
various RNA types, most studies have focused only 
on its presence in mRNAs, and there are still many 
m6A-modified ncRNAs that have yet to be identi
fied. In addition to common miRNAs, circRNAs, 
lncRNAs, ncRNAs also include Small nuclear 
RNAs (snRNAs), Small nucleolar RNAs 
(snoRNAs), and PIWI-interacting RNAs (piRNAs) 
[94], and the effects of m6A interactions with these 
ncRNAs on the development of osteosarcoma have 
not yet been reported, and further studies are needed 
to confirm them. With the rapid development of 
bioinformatics analysis and gene sequencing technol
ogy, more and more m6A modification sites of 
ncRNAs will be identified. Specific phenotypic 
alterations may not be exclusively caused by altera
tions in a single type of RNA modification. RNA 
modifications such as N1-methyladenosine (m1A), 
5-methylcytosine (m5C), 7-methylguanosine (m7G), 
and 2’-O-methylation (Nm) may also act concur
rently with m6A modifications on ncRNA [95]. 
The diagnostic sensitivity and specificity of m6A- 
associated ncRNAs as potential tumour markers 
need further validation, clinical diagnostic and ther
apeutic approaches are lacking, and more in-depth 
explorations are necessary to determine their refer
ence ranges in body fluids.

Overall, this paper provides a systematic review 
of the biological functions of m6A regulators in 
osteosarcoma and investigates the interaction 
between m6A modifications and ncRNAs in osteo
sarcoma. The study of m6A and ncRNA interre
gulation provides a new direction to study the 

pathogenesis of osteosarcoma. As research pro
gresses, more molecular regulatory mechanisms 
between ncRNA and m6A will be discovered in 
osteosarcoma, and targeting m6A-modified 
ncRNAs will be a promising therapeutic approach.
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