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Abstract

Background: Peroxisome proliferator activating receptors (PPARs) are important reg-

ulators of nuclear hormone receptor function, and they play a key role in biological

processes such as lipid metabolism, inflammation and cell proliferation. However,

their role in head and neck squamous cell carcinoma (HNSC) is unclear.

Methods: We used multiple datasets, including TCGA-HNSC, GSE41613,

GSE139324, PRJEB23709 and IMVigor, to perform a comprehensive analysis of

PPAR-related genes in HNSC. Single-cell sequencing data were preprocessed using

Seurat packets, and intercellular communication was analyzed using CellChat packets.

Functional enrichment analysis of PPAR-related genes was performed using Cluster-

Profile and GSEA. Prognostic models were constructed using LASSO and Cox regres-

sion models, and immunohistochemical analyses were performed using human

protein mapping (The Human Protein Atlas).

Results: Our single-cell RNA sequencing analysis revealed distinct cell populations in

HNSC, with T cells having the most significant transcriptome differences between

tumors and normal tissues. The PPAR features were higher in most cell types in

tumor tissues compared with normal tissues. We identified 17 PPAR-associated dif-

ferentially expressed genes between tumors and normal tissues. A prognostic model

based on seven PPAR-associated genes was constructed with high accuracy in pre-

dicting 1, 2 and 3 year survival in patients with HNSC. In addition, patients with a

low risk score had a higher immune score and a higher proportion of T cells, CD8+ T

cells and cytotoxic lymphocytes. They also showed higher immune checkpoint gene

expression, suggesting that they might benefit from immunotherapy. PPAR-related

genes were found to be closely related to energy metabolism.

Conclusions: Our study provides a comprehensive understanding of the role of PPAR

related genes in HNSC. The identified PPAR features and constructed prognostic

models may serve as potential biomarkers for HNSC prognosis and treatment

response. In addition, our study found that PPAR-related genes can differentiate

energy metabolism and distinguish energy metabolic heterogeneity in HNSC, provid-

ing new insights into the molecular mechanisms of HNSC progression and therapeu-

tic response.
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1 | INTRODUCTION

Head and neck cancer (HNC)1 is a significant public health concern

worldwide, characterized by its high morbidity and mortality rates. This

malignancy encompasses a diverse group of tumors that arise in the oral

cavity, pharynx, larynx and other anatomical regions of the head and

neck. Understanding the epidemiology of HNC is crucial for effective

prevention, early detection and treatment strategies. China has wit-

nessed a notable increase in the incidence of HNC over the past few

decades. The prevalence of risk factors such as tobacco and alcohol con-

sumption, betel nut chewing and exposure to environmental carcinogens

has contributed to the rising burden of HNC in the Chinese population.

Additionally, the high prevalence of human papillomavirus2,3 (HPV)

infection, particularly HPV16, has been implicated in the development

of oropharyngeal cancers. Geographically, HNC incidence rates vary

across different regions of China, with higher rates observed in areas

with a higher prevalence of risk factors. Internationally, HNC exhibits

significant geographical variation in its incidence and risk factor profiles.

Developed countries, such as the USA, have observed a decline in HNC

incidence, primarily attributed to the decreasing prevalence of tobacco

smoking. However, the incidence of oropharyngeal cancers associated

with HPV infection has been on the rise in several Western countries.

The main treatments for head and neck cancer include surgical

resection, radiation therapy and chemotherapy. However, although

these treatments can control the progression of the disease to a certain

extent, there are still some difficulties and problems. Early diagnosis

and screening of head and neck cancers remains a challenge. Because

the symptoms of the disease are not obvious, many patients are already

in an advanced stage when they are diagnosed, which limits the effec-

tiveness of treatment. Surgical removal is one of the main treatments

for head and neck cancer, but surgery can be difficult for some complex

tumors. For example, surgical removal of the throat and voice box can

lead to loss of speech and swallowing function, negatively affecting the

patient's quality of life. In addition, although radiation therapy and che-

motherapy can effectively control the growth and spread of tumors,

they can also cause a series of side effects. Radiation therapy can cause

problems such as dry mouth, difficulty swallowing and skin inflamma-

tion, while chemotherapy can trigger adverse reactions such as nausea,

vomiting and immunosuppression. The recurrence rate of head and

neck cancer is high, and post-treatment monitoring and follow-up is

also an important issue. Timely detection and treatment of recurrent

lesions is crucial for the survival and prognosis of patients, but there is

still a lack of effective monitoring means and follow-up strategies.

Peroxisome proliferator-activated receptors4,5 (PPARs) are a

group of nuclear receptors that play a crucial role in various physiolog-

ical processes, including metabolism, inflammation and cell prolifera-

tion. Emerging evidence suggests that PPARs also have important

implications for cancer progression. PPARs6 are classified into three

subtypes: PPAR-α, PPAR-β/δ and PPAR-γ. Each subtype has distinct

tissue distribution and functions. PPAR-α is predominantly expressed

in the liver, heart and skeletal muscle, and is involved in lipid metabo-

lism. PPAR-β/δ is ubiquitously expressed and regulates fatty acid oxi-

dation and glucose metabolism. PPAR-γ is mainly expressed in

adipose tissue and plays a key role in adipogenesis and insulin sensi-

tivity. In the context of cancer, PPARs7 have been found to exhibit

both tumor-promoting and tumor-suppressing effects, depending on

the specific cancer type and stage. PPAR-γ, in particular, has been

extensively studied in various cancers, including breast, colon, pros-

tate and lung cancer. Activation of PPAR-γ8–10 has been shown to

inhibit cancer cell proliferation, induce cell cycle arrest and promote

apoptosis. Additionally, PPAR-γ activation can also modulate inflam-

mation and angiogenesis, further contributing to its anti-cancer

effects. PPAR-α and PPAR-β/δ have been implicated in promoting

cancer cell survival and proliferation in certain contexts. For example,

PPAR-α activation has been associated with increased tumor growth

and metastasis in hepatocellular carcinoma and colorectal cancer.

The PPARs7,8 are a class of nuclear receptors that play a pivotal

role in regulating lipid and glucose metabolism and maintaining energy

homeostasis. There are three subtypes of PPARs: PPARα, PPARβ/δ,

and PPARγ, each of which has a distinct expression pattern in differ-

ent tissues and plays a unique role in energy metabolism. PPARα: Pre-

dominantly expressed in the liver, kidney, heart and skeletal muscle,

PPARα is a primary regulator of fatty acid oxidation, involved in the

regulation of fatty acid breakdown and energy production. PPARβ/δ

is expressed in various tissues throughout the body, including muscle

and adipose tissue. PPARβ/δ is considered a key factor in regulating

fatty acid oxidation and energy expenditure, and it also plays a role in

regulating insulin sensitivity and adipose tissue differentiation. Mainly

expressed in adipose tissue, PPARγ is a principal factor in regulating

adipocyte differentiation and fat storage. PPARγ also plays a role in

regulating insulin sensitivity and glucose metabolism. The PPARs exe-

cute their functions by regulating the expression of a series of genes

that encode proteins involved in fatty acid transport, storage and oxi-

dation, as well as proteins involved in glucose metabolism and insulin

signaling. Therefore, PPARs play a crucial role in maintaining energy

metabolic balance and preventing metabolic diseases such as obesity,

type 2 diabetes and cardiovascular diseases.

With the development of computational biology, Wang et al.11 and

Yan et al.12 investigated a variety of prognostic models using weighted

correlation network analysis (WGCNA)13 as well as public databases.14,15

Therefore, the study of PPARs is of great value for the treatment of mul-

tiple solid cancers. This study attempts to study the molecular regulatory

mechanism related to PPARs by combining computational biology.

The prognostic model of PPARs was established to prove their value

in the treatment of head and neck cancer and to provide a strong

basis for the subsequent research of sequencing level.
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2 | METHOD

2.1 | Multi-cohorts and gene set

The Cancer Genome Atlas Program-head and neck squamous cell car-

cinoma (TCGA-HNSC) dataset consists of genomic data from

504 tumor samples and 44 normal samples of HNSC. This dataset

provides a comprehensive view of the genetic alterations and molecu-

lar characteristics associated with HNSC, allowing for the identifica-

tion of potential biomarkers and therapeutic targets.

The GSE4161316 dataset is a microarray-based dataset compris-

ing 95 samples. It focuses on patients with a specific disease (not

specified) and excludes those with a survival time of less than 30 days.

This dataset enables the investigation of gene expression patterns

and molecular signatures associated with the disease, potentially

revealing insights into disease progression and prognosis.

The GSE13932417 dataset consists of single-cell sequencing data

from five tumor samples and five normal samples. This dataset pro-

vides a high-resolution view of the cellular heterogeneity within the

studied tissue, allowing for the identification of rare cell populations,

characterization of cell states, and exploration of tumor microenviron-

ment dynamics.

The PRJEB2370918 dataset represents a cohort of 71 patients with

melanoma who underwent immunotherapy treatment. This dataset

includes clinical information, treatment response data and genomic pro-

files, enabling the investigation of factors influencing response to immu-

notherapy and the identification of potential predictive biomarkers.

The IMVigor dataset19 comprises a cohort of 293 patients with

bladder cancer who received immunotherapy treatment. This dataset

includes clinical data, treatment response information and genomic

profiles, providing an opportunity to study the immune landscape of

bladder cancer and identify potential biomarkers associated with

immunotherapy response. The PPAR gene dataset consists of gene

expression data from 69 samples. It focuses on genes involved in the

pPAR (PPAR) signaling pathway, which plays a crucial role in regulat-

ing various biological processes, including lipid metabolism, inflamma-

tion and cell proliferation. This gene set allows for the investigation of

PPAR pathway dysregulation in different diseases and the identifica-

tion of potential therapeutic targets.

2.2 | Single-cell analysis

First, we preprocess the single-cell sequencing data using the Seurat

package.20 Seurat provides various functions for quality control, nor-

malization, feature selection and dimensionality reduction of the data.

After preprocessing, we use the ggplot2 package to create visualiza-

tions of the cell population proportions. This can be done by generat-

ing bar plots that represent the proportions of different cell types or

clusters identified in the data. To analyze cell–cell communication, we

utilize the CellChat package.21 CellChat provides methods to identify

and characterize intercellular communication networks within single-

cell data. It allows you to explore the interactions between different

cell types and identify key signaling pathways. We use the Dorothea22

package. Dorothea provides a comprehensive collection of transcrip-

tion factor binding site predictions, which can be used to evaluate the

activity of specific transcription factors in the single-cell data. This

analysis helps in understanding the regulatory mechanisms underlying

gene expression patterns. To assess the activity of tumor-related

pathways, you can employ the progeny package. Progeny23,24 utilizes

gene expression data to calculate pathway activity scores, allowing

you to evaluate the activation or inhibition of specific pathways in the

single-cell data. This analysis provides insights into the functional

states of cells within the tumor microenvironment.

2.3 | Functional enrichment analysis of PPAR
related genes was performed

ClusterProfile25,26 was used for pathway enrichment analysis, which

could help us find biological pathways that were significantly enriched in

a given gene set, thereby revealing the functional significance of changes

in single-cell gene expression. Next, the results of the enrichment analy-

sis were visualized using the gene set enrichment analysis (GSEA)27–29

package. GseaVis offers interactive charts and visualization tools to

explore enriched gene sets and their relationships in single-cell data.

Finally, RCircos was used to map the chromosomal position. RCir-

cos is an R package for creating circular graphs that visualize genomic

data, including the locations of genes on chromosomes. In single-cell

analysis, RCircos can be used to visualize the genomic location of a

specific gene or set of genes in a circular layout, thereby exploring

spatial relationships and genomic organization.

2.4 | HNSC subtypes and prognostic model
analysis of PPAR related genes

Least absolute shrinkage and selection operator (LASSO) and Cox

regression models were constructed using glmnet.30 Survminer draws

the survival curve, ggplot2,31,32 and ggpubr draw violin drawings. The

timeROC33,34 package plots the receiver operating characteristic

(ROC) curve. Pheatmap draws heat maps and gsva packets calculate

channel scores. The immuno-oncology biological research (IOBR)

package was evaluated and the proportion of immunoinfiltrated cells

was calculated. Survminer draws the survival curve. The Consensu-

sClusterPlus package was used for consistent cluster analysis.

2.5 | Immunohistochemical analysis and validation
analysis

The Human Protein Atlas (HPA) is a comprehensive and publicly avail-

able database that provides valuable information on the expression

patterns and subcellular localization of proteins in various human tis-

sues and cells. It aims to map the human proteome by systematically

profiling the expression of proteins across different tissues and cell
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types. The HPA database integrates data from multiple sources,

including immunohistochemistry, immunofluorescence and RNA

sequencing (RNA-seq), to provide a comprehensive view of protein

expression in human tissues. It covers a wide range of tissues, includ-

ing major organs, such as the brain, heart, liver and kidney, as well as

specific cell types, such as immune cells and stem cells. The database

provides detailed information on the expression levels of proteins,

their subcellular localization and their tissue specificity. It also includes

images and annotations that allow users to visualize and interpret the

data. Additionally, the HPA database provides access to transcrip-

tomic data, enabling users to explore the correlation between mRNA

expression and protein abundance.

2.6 | PPAR-related signature and energy
metabolism pathway

The energy metabolism pathways include thiamine metabolism, tryp-

tophan metabolism, tyrosine metabolism, phenylalanine metabolism,

sphingolipid metabolism, starch and sucrose metabolism, propanoate

metabolism, pyruvate metabolism, retinol metabolism, other glycan

degradation, caffeine metabolism, fatty acid degradation, lysine degra-

dation, glutathione metabolism and glycolysis gluconeogenesis. The

PPAR genes were analyzed using the energy metabolism pathway

with Pearson's correlation coefficient.

3 | RESULTS

3.1 | Single-cell RNA-seq analysis for HNSC

The overall study design is presented in Figure 1. Initially, we down-

loaded single-cell RNA-sequencing (scRNA-seq) data from five tumor

and five normal tissues from the gene expression omnibus (GEO)

database to investigate the characteristics of tumor-infiltrating

immune cells. After filtering the single-cell data, we clustered and

annotated a total of 20,313 cells from tumor and normal tissues into

five cell types, including natural killer cells, mast cells, myeloid cells, B

cells and T cells, as shown in Figures 2A,B and S1. Moreover, the cell

type marker genes were specifically expressed in the corresponding

cell population, indicating the accuracy of cell annotation, as depicted

in Figure 2C,D. The proportion of cells in each patient is illustrated in

Figure 2E. Furthermore, we performed differential expression analysis

on each cell type between the tumor and normal tissue. The results

revealed that the transcriptome features of T cells from tumor and

normal tissue were the most different, with 869 differentially

expressed genes (DEGs), as shown in Figure 2E. We also conducted

transcription factor analysis across various cell types between tumor

and normal tissues, as depicted in Figure 3A,B. In addition, we exam-

ined the expression correlation between various cell types and the pri-

mary tumor pathways between tumor and normal tissues, as

illustrated in Figure 3C,D. Analysis of intercellular communication

revealed that there were close communication links between cells,

and T cells communicated more strongly with other cell populations in

the tumor tissue, as shown in Figure 3E.

3.2 | PPAR signature in HNSC single-cell samples

To investigate the role of the PPAR signature in HNSC, we calculated

the PPAR signature of each cell and compared the PPAR signature

between tumor and normal tissues (Figure 4A,B). As shown in

Figure 4C, most cell types from tumor tissues had a higher PPAR sig-

nature than those from normal tissues, such as T cells and myeloid

cells (Figure 4C). Then, we divided cells into PPAR signature-high and

PPAR signature-low based on the median value of PPAR signature

score (Figure 4D). Furthermore, 187 up-regulated and 43 down-

regulated DEGs were identified in PPAR signature-high cells and

DEGs were selected with adjusted P-values <0.05 and jlogFCj > 0.25

(Figure 4E). GSEA analysis showed that oxidative phosphorylation,

MTORC1 signaling, epithelial mesenchymal transformation and G2M

checkpoint pathways were significantly up-regulated in PPAR

signature-high cells (Figure 4F). The detailed model information can

be seen in Table S1.

F IGURE 1 The flowchart of the
study design.
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F IGURE 2 Marker gene expression in each cluster. (A) UMAP projection of 20,313 cells from five tumor and normal tissues. (B) UMAP
projection of tumor and normal groups. (C) Dot plot showing the expression of marker genes. (D) Violin plot showing the expression of marker
genes. (E) Cell type distribution in each sample. (F) UMAP projection of DEGs number in each cell types.
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F IGURE 3 Transcription factor, primary tumor
pathways, and cell–cell cross talk analysis. (A,B)
Heatmap showing the transcription factor
(TF) expression in tumor (A) and normal
(B) samples among cell types. (C,D) Heatmap
showing the primary tumor pathways expression
in tumor (C) and normal (D) samples among cell
types. (E,F) The results of CellChat analysis.
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F IGURE 4 Peroxisome proliferator activating receptor (PPAR) signature score between tumor and normal sample. (A) UMAP projection of
PPAR signature score. (B) UMAP projection of PPAR signature score in tumor and normal samples. (C) Violin plots showing the PPAR signature
score in different cell types between tumor and normal tissue. (D) UMAP projection of cell grouped by PPAR signature. (E) Volcano plot of
differentially expressed genes (DEGs) between PPAR-high and low cells. (F) The results of GSEA analysis.
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F IGURE 5 Identification of
PPAR-related DEGs. (A) Volcano
plot of DEGs between tumor and
normal sample in TCGA-HNSC.
(B) Heatmap showing the
differentially expression of
17 PPAR-related DEGs. (C–F) The
expression level (protein and
mRNA) of FABP6 (C), FABP5 (D),

HMGCS2 (E) and SLC27A6 (F) in
tumor and normal tissues. (G) The
circle plot showing the
chromosomal location distribution
of 17 PPAR-related DEGs. (H) An
oncoplot of PPAR related DEGs.
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F IGURE 6 Prognostic model development of overall survival (OS) based on PPAR related genes. (A) Distribution of risk score according to the
survival status and time in TCGA-HNSC. (B) Principal component analysis plot based on the risk score in TCGA-HNSC. (C) Kaplan–Meier analyses for
the high-risk and low-risk groups in TCGA-HNSC cohort. (D) Receiver operating characteristic (ROC) plot based on the risk score in the TCGA-HNSC
cohort. (E) The relationship between risk score and clinical features. (F) The ridge plot showing the top 10 pathways based on GSVA analysis.
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3.3 | Identification of PPAR-related DEGs

As depicted in Figure 5A, DEG analysis revealed that there were 1774

up-regulated and 656 down-regulated genes in HNSC tissues com-

pared with normal tissues. Additionally, our data indicated that PPAR-

related genes exhibited differential expression between tumor and

normal tissues. Specifically, up-regulated PPAR-related genes includ-

ing FABP6, MMP1, FABP5, SCD, OLR1, SCD5 and FADS2 were

highly expressed in tumor tissues, while down-regulated PPAR-related

genes including SORBS1, FABP3, PPARG, ACOX2, FABP7, AQP7,

PLIN1, ADIPOQ, HMGCS2 and SLC27A6 were highly expressed in

normal tissues, as shown in Figure 5B. The results based on HPA and

GEPIA database analysis showed that at both the protein and mRNA

levels, FABP6 and FABP5 exhibited higher expression in tumor sam-

ples while both HMGCS2 and SLC27A6 exhibited significantly higher

expression in normal samples (Figure 5C–F). The circle diagram in

Figure 5G shows the chromosomal locations of the 17 PPAR-related

DEGs. Moreover, correlation analysis showed that the expression of

each of the 17 PPAR-related DEGs mostly exhibited a positive corre-

lation, as depicted in Figure S2. Notably, the waterfall plot revealed

that PPAR-related genes were mutated, with the top three mutated

genes including SORBS1, SLC27A6 and MMP1 having a mutation fre-

quency >10%, as shown in Figure 5H.

3.4 | Prognostic model development and
validation of overall survival based on PPAR-
related genes

Then we constructed a prognostic model based on seven PPAR

related gene according to the LASSO–Cox regression analysis

(Figure S3). The following formula was used: risk score = �0.24334 �
ACAA1 � 0.14841 � ACOX3 + 0.048727 � ACSL4 � 0.50133

� ACSL6 + 0.070616 � MMP1 + 0.169386*PCK1 + 0.145317 �
PPARG. Afterwards, we calculated the risk scores for each sample in

the TCGA-HNSC cohort and divided then into high- and low-risk

groups based on the median value of risk score. As shown in

Figure 6A, our analysis results showed a higher mortality rate in the

high risk patients based on the distributions of risk scores and survival

status. Principal component analysis indicated that the classification

was satisfactory based on risk score (Figure 6B). Notably, a marked

difference was detected in the overall survival (OS) time between

F IGURE 7 Prognostic model validation of OS in GSE41613 and GSE65858 cohort. (A) Distribution of risk score according to the survival
status and time in GSE41613 cohort. (B) Kaplan–Meier analyses for the high risk and low risk groups in GSE41613 cohort. (C) ROC plot based on
the risk score in the GSE41613 cohort. (D) Distribution of risk score according to the survival status and time in GSE65858 cohort. (E) Kaplan–
Meier analyses for the high-risk and low-risk groups in GSE65858 cohort. (F) ROC plot based on the risk score in the GSE65858 cohort.
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F IGURE 8 Risk score predicted the immunotherapy response. (A) The violin plot showing the immune score for low- and high-risk patients.
(B) The relationship between the abundance of T cells, CD8+ T cells, B lineage and cytotoxic lymphocytes and risk score. (C) The boxplot showing
the expression of immune checkpoint genes. (D) The barplot showing the distribution of responder and non-responder between high- and low-
risk groups in PRJEB23709 cohort. (E) The barplot showing the distribution of responder and non-responder between high- and low-risk groups
in IMVigor210 cohort. (F) Kaplan–Meier analyses for the high-risk and low-risk groups in the IMVigor210 cohort.
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F IGURE 9 Molecular clusters in head and neck squamous cell carcinoma (HNSC). (A) The heatmap showing the HNSC patients were grouped
into tow molecular clusters based on seven model gene profiles in the TCGA-HNSC cohort. (B) Kaplan–Meier analyses for the cluster 1 and
cluster 2 groups in TCGA-HNSC cohort. (C) The heatmap showing the HNSC patients was grouped into two molecular clusters based on seven
model gene profiles in the GSE41613 cohort. (D) Kaplan–Meier analyses for the cluster 1 and cluster 2 groups in the GSE41613 cohort.
(E) Heatmap showing mRNA expression; expression vs. methylation; amplification frequency; and the deletion frequency for immune-related
genes between cluster 1 and cluster 2 patient.
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these two groups and patients with low risk were more likely to have

lower death rate (Figure 6C). The ROC curve demonstrated that the

prognostic model had high accuracy in predicting 1, 2 and 3 year

survival of HNSC patients (Figure 6D). Moreover, risk score was sig-

nificantly associated with survival status including OS and

progression-free survival (PFS), but not age, stage or gender

(Figure 6E). Gene set variation analysis (GSVA) showed the top 10 hall-

mark pathways up-regulated in high risk patients, such as hypoxia and

kras_signaling_up (Figure 6F). Then, we used two external datasets

(GSE41613 and GSE65858) to verify the accuracy of the prognostic

model and similar results were obtained, suggesting the prognostic

model was reliable and repeated (Figure 7).

F IGURE 10 MMP1 and energy metabolism Part 1.
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3.5 | Risk score predicted immunotherapy
response and molecular clusters

To illustrate the relationship between immune characteristics and risk

score, we used the “ESTIMATE” R package to calculate the Immune-

Score and found that patients with a low risk score had higher levels

of ImmuneScore, as shown in Figure 8A. We then examined the abun-

dance of tumor infiltrating immune cells between low- and high-

risk-score groups and found that low-risk-score patients had a higher

proportion of T cells, CD8+ T cells and cytotoxic lymphocytes, as

shown in Figure 8B. We also analyzed the expression of immune

checkpoint genes between low- and high-risk-score groups and found

that patients with low risk score highly expressed PDCD1, IL23A,

TNFRSF14, JAK2 and TNFRSF, suggesting that they may benefit from

immunotherapy, as shown in Figure 8C. Our data further showed that

a higher proportion of patients in the low-risk group responded to

immunotherapy, as shown in Figure 8D,E, and patients with low risk

had longer survival time in the immunotherapy cohort, as shown in

Figure 8F. Furthermore, using the “ConsensusClusterPlus” R package,

we identified two molecular clusters based on seven model genes in

HNSC and found that patients in cluster 2 had a survival advantage

tendency, as shown in Figure 9A,B. This finding was validated in the

GSE41613 dataset, as shown in Figure 9C,D. We observed significant

differences in the methylation, amplification and deletion frequency

of immunomodulation-related genes between cluster 1 and cluster

2 patients, as shown in the heatmap in Figure 9E. Overall, our findings

suggest that risk score can predict immunotherapy response and that

molecular clustering based on model genes can identify patients with

different survival outcomes.

3.6 | PPAR-related signature and energy
metabolism pathway

The thiamine metabolism, tryptophan metabolism, tyrosine metabo-

lism, phenylalanine metabolism, sphingolipid metabolism, starch and

sucrose metabolism, propanoate metabolism, pyruvate metabolism,

retinol metabolism, other glycan degradation, caffeine

metabolism, fatty acid degradation, lysine degradation, glutathione

metabolism and glycolysis gluconeogenesis pathways were validated

closely in relation to the PPAR-related genes. Therefore, we suggest

that the PPAR genes can differentiate energy metabolism and distin-

guish the heterogeneity of energy metabolism in the head and neck

(Figures 10 and 11).

4 | DISCUSSION

This study aimed to investigate the characteristics of tumor-

infiltrating immune cells in HNSC using scRNA-seq analysis. The

scRNA-seq data from tumor and normal tissues were downloaded

from the GEO database and analyzed. Transcription factor analysis

and pathway analysis showed distinct patterns of gene regulation and

signaling pathways in different cell types between tumor and normal

tissues. Furthermore, the role of the PPAR signature in HNSC was

investigated. The PPAR signature was calculated for each cell, and it

was found that most cell types in tumor tissues had a higher PPAR

signature compared with normal tissues. Differential expression analy-

sis identified up-regulated and down-regulated genes in PPAR

signature-high cells. Gene set enrichment analysis revealed the up-

regulation of pathways related to oxidative phosphorylation,

MTORC1 signaling, epithelial–mesenchymal transition and the G2M

checkpoint in PPAR signature-high cells. Moreover, PPAR-related

genes were found to be differentially expressed between tumor and

normal tissues. Up-regulated PPAR-related genes were highly

expressed in tumor tissues, while down-regulated PPAR-related genes

were highly expressed in normal tissues. The expression of PPAR-

related genes showed a positive correlation, and several genes were

found to be frequently mutated in HNSC. Based on the PPAR-related

genes, a prognostic model for OS was developed using LASSO–Cox

regression analysis. The model showed significant differences in OS

between high-risk and low-risk groups. The model was validated in an

external dataset, demonstrating its reliability. The risk score derived

from the model was associated with immune characteristics, immuno-

therapy response and molecular clusters in HNSC. Therefore, we

believe that PPAR-related genes have important research value. Next,

we try to further reveal the great significance of PPAR-related genes

for targeted therapy of solid tumors by comparing the studies of

PPAR in other solid tumors.

Among the five mammalian ACSL family members, ACSL1 and

ACSL3 are involved in facilitating cancer progression, while ACSL5

participates in the pro-apoptotic sensing of cells, acting as a tumor

suppressor.35 ACSL4 activates long-chain fatty acids to initiate a num-

ber of intracellular lipid metabolic pathway.36 Emerging evidence

shows that dysregulated expression of ACSL4 is tightly associated

with various diseases, and especially with cancers.37 The mechanisms

of ACSL4 involvement in tumor development may include

iron-dependent, non-apoptotic and cell death pathways38 Phospho-

enolpyruvate carboxykinase 1 (PCK1),39 a key rate-limiting enzyme in

gluconeogenesis, catalyzes the conversion of oxaloacetate to phos-

phoenolpyruvate. The PCK1 expression in gluconeogenic tissues is

tightly regulated during fasting. In tumor cells, PCK1 is regulated in

a cell-autonomous manner rather than by hormones or nutrients in

the extracellular environment. Interestingly, PCK1 has an anti-

oncogenic role in gluconeogenic organs (the liver and kidneys), but a

tumor-promoting role in cancers arising from non-gluconeogenic

organs. Recent studies have revealed that PCK1 has metabolic and

non-metabolic roles in multiple signaling networks linking metabolic

and oncogenic pathways. Aberrant PCK1 expression results in the

activation of oncogenic pathways, accompanied by metabolic repro-

gramming, to maintain tumorigenesis. In terms of molecular pathways,

we found significant changes in oxidative phosphorylation, MTORC1

signaling, epithelial mesenchymal transformation and G2M check-

points in different molecular subtypes of the PPAR pathway. Oxida-

tive phosphorylation, MTORC1 signaling, epithelial mesenchymal

transformation and G2M checkpoint pathway were significantly
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upregulated in PPAR cells. Several studies have investigated the cross-

talk between PPAR and MTORC1 signaling pathways and their impact

on various diseases, including cancer, metabolic disorders and neuro-

degenerative diseases. These studies have revealed that PPAR activa-

tion can modulate MTORC1 activity and downstream signaling

pathways, leading to changes in cellular processes such as autophagy,

lipid metabolism and inflammation.

Furthermore, emerging evidence suggests that the interaction

between PPAR and MTORC1 may have therapeutic implications. For

instance, the use of PPAR agonists, such as fibrates and thiazolidine-

diones, has been explored as a potential strategy to modulate

MTORC1 activity and improve the outcomes of various diseases.

Recent studies4 have shown that PPARs play a significant role in

regulating oxidative phosphorylation. Activation of PPARs has been

found to enhance mitochondrial biogenesis, increase the expression

of genes involved in oxidative phosphorylation, and improve mito-

chondrial function. This suggests that PPARs may have a direct impact

on the efficiency of ATP production in cells. Furthermore,

researchers4 have also investigated the crosstalk between PPARs and

other signaling pathways involved in oxidative phosphorylation. For

example, PPARs have been found to interact with AMP-activated pro-

tein kinase, a key regulator of cellular energy metabolism. This interac-

tion can modulate the activity of oxidative phosphorylation enzymes

and influence ATP production. Additionally, dysregulation of PPARs

and oxidative phosphorylation has been implicated in various meta-

bolic disorders, including obesity, diabetes and cardiovascular

F IGURE 11 MMP1 and energy metabolism Part 2.
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diseases. Understanding the molecular mechanisms underlying the

interplay between PPARs and oxidative phosphorylation may provide

insights into the development of therapeutic strategies for these con-

ditions. PPARα regulates lipid metabolism in the liver, the organ that

primarily controls nutrient/energy homeostasis throughout the body,

abnormalities of which may lead to hepatic steatosis, steatohepatitis,

fatty fibrosis and liver cancer.16 Therefore, we believe that PPAR-

related genes may promote the progression of head and neck cancer

by affecting the above pathways. However, since this paper is only

data-level analysis, further in vitro and in vivo animal model experi-

ments still need to be verified.

In addition, MMP1 was found to be associated with thiamine

metabolism, tryptophan metabolism, tyrosine metabolism, phenylala-

nine metabolism, sphingolipid metabolism, starch and sucrose metab-

olism, propanoate metabolism, pyruvate metabolism, retinol

metabolism, other glycan degradation, caffeine metabolism and other

related pathways. Matrix metalloproteinase-1 (MMP-1) is an enzyme

responsible for the degradation of extracellular matrix components

such as collagen, elastin and gelatin, especially interstitial collagen

types I, II and III. The activity of MMP-1 is strictly regulated at multiple

levels, such as gene transcription, preenzyme activation and enzyme

inhibition. Dysregulation of MMP-1 metabolism is associated with

various pathologic processes such as cancer, fibrosis, arthritis and car-

diovascular diseases. For example, in cancer, overexpression of

MMP-1 can promote tumor growth, invasion and metastasis by

degrading the extracellular matrix and promoting angiogenesis. Con-

versely, inhibiting the activity of MMP-1 has been explored as a strat-

egy for cancer treatment. In fibrotic diseases, MMP-1 can promote

tissue remodeling and fibrosis by degrading collagen and other extra-

cellular matrix components. Therefore, regulating the activity of

MMP-1 is considered a potential treatment for these diseases. Over-

all, MMP-1 plays a key role in the metabolism of the extracellular

matrix, and dysregulation of its metabolism can lead to various patho-

logical conditions. Further studies are needed to fully understand the

mechanisms of MMP-1 metabolism and to develop effective thera-

peutic strategies against MMP-1.

In addition, the research has some other limitations. The research

involves multiple cancer types and different sample sources, and there

is considerable heterogeneity between the data. This makes cross-

cancer comparisons and analyses difficult and additional data stan-

dardization and correction may be required. The samples in this

research are mainly from cancer patients, and there is a lack of control

samples from healthy people. This makes it difficult to identify which

genetic variants are associated with cancer rather than normal physio-

logical changes. The research focused primarily on cancer patients in

the USA and lacked samples from other regions and ethnicities. This

may limit the generalizability of the findings, as different ethnic and

geographical backgrounds may have different cancer pathogenesis

and genetic variations. Although the data from the research has been

publicly released, owing to the complexity and scale of the data, there

are still certain thresholds for non-expert researchers to access and

analyze the data. This may limit the utilization and discovery of the

data by the broader scientific community.

In conclusion, this study provides insights into the characteristics

of energy metabolism the role of PPAR-related genes in HNSC. The

developed prognostic model based on PPAR-related genes shows

promise in predicting patient outcomes and immunotherapy response.

These findings contribute to a better understanding of HNSC and

may guide future therapeutic interventions.
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