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Abstract

Background: Peroxisome proliferator activating receptors (PPARs) are important reg-
ulators of nuclear hormone receptor function, and they play a key role in biological
processes such as lipid metabolism, inflammation and cell proliferation. However,
their role in head and neck squamous cell carcinoma (HNSC) is unclear.

Methods: We used multiple datasets, including TCGA-HNSC, GSE41613,
GSE139324, PRJEB23709 and IMVigor, to perform a comprehensive analysis of
PPAR-related genes in HNSC. Single-cell sequencing data were preprocessed using
Seurat packets, and intercellular communication was analyzed using CellChat packets.
Functional enrichment analysis of PPAR-related genes was performed using Cluster-
Profile and GSEA. Prognostic models were constructed using LASSO and Cox regres-
sion models, and immunohistochemical analyses were performed using human
protein mapping (The Human Protein Atlas).

Results: Our single-cell RNA sequencing analysis revealed distinct cell populations in
HNSC, with T cells having the most significant transcriptome differences between
tumors and normal tissues. The PPAR features were higher in most cell types in
tumor tissues compared with normal tissues. We identified 17 PPAR-associated dif-
ferentially expressed genes between tumors and normal tissues. A prognostic model
based on seven PPAR-associated genes was constructed with high accuracy in pre-
dicting 1, 2 and 3 year survival in patients with HNSC. In addition, patients with a
low risk score had a higher immune score and a higher proportion of T cells, CD8+ T
cells and cytotoxic lymphocytes. They also showed higher immune checkpoint gene
expression, suggesting that they might benefit from immunotherapy. PPAR-related
genes were found to be closely related to energy metabolism.

Conclusions: Our study provides a comprehensive understanding of the role of PPAR
related genes in HNSC. The identified PPAR features and constructed prognostic
models may serve as potential biomarkers for HNSC prognosis and treatment
response. In addition, our study found that PPAR-related genes can differentiate
energy metabolism and distinguish energy metabolic heterogeneity in HNSC, provid-
ing new insights into the molecular mechanisms of HNSC progression and therapeu-

tic response.
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1 | INTRODUCTION
Head and neck cancer (HNC)! is a significant public health concern
worldwide, characterized by its high morbidity and mortality rates. This
malignancy encompasses a diverse group of tumors that arise in the oral
cavity, pharynx, larynx and other anatomical regions of the head and
neck. Understanding the epidemiology of HNC is crucial for effective
prevention, early detection and treatment strategies. China has wit-
nessed a notable increase in the incidence of HNC over the past few
decades. The prevalence of risk factors such as tobacco and alcohol con-
sumption, betel nut chewing and exposure to environmental carcinogens
has contributed to the rising burden of HNC in the Chinese population.
Additionally, the high prevalence of human papillomavirus®® (HPV)
infection, particularly HPV16, has been implicated in the development
of oropharyngeal cancers. Geographically, HNC incidence rates vary
across different regions of China, with higher rates observed in areas
with a higher prevalence of risk factors. Internationally, HNC exhibits
significant geographical variation in its incidence and risk factor profiles.
Developed countries, such as the USA, have observed a decline in HNC
incidence, primarily attributed to the decreasing prevalence of tobacco
smoking. However, the incidence of oropharyngeal cancers associated
with HPV infection has been on the rise in several Western countries.
The main treatments for head and neck cancer include surgical
resection, radiation therapy and chemotherapy. However, although
these treatments can control the progression of the disease to a certain
extent, there are still some difficulties and problems. Early diagnosis
and screening of head and neck cancers remains a challenge. Because
the symptoms of the disease are not obvious, many patients are already
in an advanced stage when they are diagnosed, which limits the effec-
tiveness of treatment. Surgical removal is one of the main treatments
for head and neck cancer, but surgery can be difficult for some complex
tumors. For example, surgical removal of the throat and voice box can
lead to loss of speech and swallowing function, negatively affecting the
patient's quality of life. In addition, although radiation therapy and che-
motherapy can effectively control the growth and spread of tumors,
they can also cause a series of side effects. Radiation therapy can cause
problems such as dry mouth, difficulty swallowing and skin inflamma-
tion, while chemotherapy can trigger adverse reactions such as nausea,
vomiting and immunosuppression. The recurrence rate of head and
neck cancer is high, and post-treatment monitoring and follow-up is
also an important issue. Timely detection and treatment of recurrent
lesions is crucial for the survival and prognosis of patients, but there is
still a lack of effective monitoring means and follow-up strategies.
Peroxisome proliferator-activated receptors*® (PPARs) are a
group of nuclear receptors that play a crucial role in various physiolog-
ical processes, including metabolism, inflammation and cell prolifera-
tion. Emerging evidence suggests that PPARs also have important

implications for cancer progression. PPARs® are classified into three

subtypes: PPAR-a, PPAR-5/6 and PPAR-y. Each subtype has distinct
tissue distribution and functions. PPAR-« is predominantly expressed
in the liver, heart and skeletal muscle, and is involved in lipid metabo-
lism. PPAR-$/6 is ubiquitously expressed and regulates fatty acid oxi-
dation and glucose metabolism. PPAR-y is mainly expressed in
adipose tissue and plays a key role in adipogenesis and insulin sensi-
tivity. In the context of cancer, PPARs’ have been found to exhibit
both tumor-promoting and tumor-suppressing effects, depending on
the specific cancer type and stage. PPAR-y, in particular, has been
extensively studied in various cancers, including breast, colon, pros-
tate and lung cancer. Activation of PPAR-y®"1° has been shown to
inhibit cancer cell proliferation, induce cell cycle arrest and promote
apoptosis. Additionally, PPAR-y activation can also modulate inflam-
mation and angiogenesis, further contributing to its anti-cancer
effects. PPAR-a and PPAR-3/6 have been implicated in promoting
cancer cell survival and proliferation in certain contexts. For example,
PPAR-a activation has been associated with increased tumor growth
and metastasis in hepatocellular carcinoma and colorectal cancer.

The PPARs”® are a class of nuclear receptors that play a pivotal
role in regulating lipid and glucose metabolism and maintaining energy
homeostasis. There are three subtypes of PPARs: PPARa, PPARS/S,
and PPARYy, each of which has a distinct expression pattern in differ-
ent tissues and plays a unique role in energy metabolism. PPARa: Pre-
dominantly expressed in the liver, kidney, heart and skeletal muscle,
PPARa is a primary regulator of fatty acid oxidation, involved in the
regulation of fatty acid breakdown and energy production. PPARS/6
is expressed in various tissues throughout the body, including muscle
and adipose tissue. PPARp/6 is considered a key factor in regulating
fatty acid oxidation and energy expenditure, and it also plays a role in
regulating insulin sensitivity and adipose tissue differentiation. Mainly
expressed in adipose tissue, PPARY is a principal factor in regulating
adipocyte differentiation and fat storage. PPARYy also plays a role in
regulating insulin sensitivity and glucose metabolism. The PPARs exe-
cute their functions by regulating the expression of a series of genes
that encode proteins involved in fatty acid transport, storage and oxi-
dation, as well as proteins involved in glucose metabolism and insulin
signaling. Therefore, PPARs play a crucial role in maintaining energy
metabolic balance and preventing metabolic diseases such as obesity,
type 2 diabetes and cardiovascular diseases.

With the development of computational biology, Wang et al.** and

|.12

Yan et al.”™ investigated a variety of prognostic models using weighted

correlation network analysis (WGCNA)*2 as well as public databases.***°
Therefore, the study of PPARs is of great value for the treatment of mul-
tiple solid cancers. This study attempts to study the molecular regulatory
mechanism related to PPARs by combining computational biology.
The prognostic model of PPARs was established to prove their value
in the treatment of head and neck cancer and to provide a strong

basis for the subsequent research of sequencing level.
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2 | METHOD
21 | Multi-cohorts and gene set

The Cancer Genome Atlas Program-head and neck squamous cell car-
cinoma (TCGA-HNSC) dataset consists of genomic data from
504 tumor samples and 44 normal samples of HNSC. This dataset
provides a comprehensive view of the genetic alterations and molecu-
lar characteristics associated with HNSC, allowing for the identifica-
tion of potential biomarkers and therapeutic targets.

The GSE41613° dataset is a microarray-based dataset compris-
ing 95 samples. It focuses on patients with a specific disease (not
specified) and excludes those with a survival time of less than 30 days.
This dataset enables the investigation of gene expression patterns
and molecular signatures associated with the disease, potentially
revealing insights into disease progression and prognosis.

The GSE139324'7 dataset consists of single-cell sequencing data
from five tumor samples and five normal samples. This dataset pro-
vides a high-resolution view of the cellular heterogeneity within the
studied tissue, allowing for the identification of rare cell populations,
characterization of cell states, and exploration of tumor microenviron-
ment dynamics.

The PRIEB237098 dataset represents a cohort of 71 patients with
melanoma who underwent immunotherapy treatment. This dataset
includes clinical information, treatment response data and genomic pro-
files, enabling the investigation of factors influencing response to immu-
notherapy and the identification of potential predictive biomarkers.

The IMVigor dataset!” comprises a cohort of 293 patients with
bladder cancer who received immunotherapy treatment. This dataset
includes clinical data, treatment response information and genomic
profiles, providing an opportunity to study the immune landscape of
bladder cancer and identify potential biomarkers associated with
immunotherapy response. The PPAR gene dataset consists of gene
expression data from 69 samples. It focuses on genes involved in the
pPAR (PPAR) signaling pathway, which plays a crucial role in regulat-
ing various biological processes, including lipid metabolism, inflamma-
tion and cell proliferation. This gene set allows for the investigation of
PPAR pathway dysregulation in different diseases and the identifica-

tion of potential therapeutic targets.

2.2 | Single-cell analysis

First, we preprocess the single-cell sequencing data using the Seurat
package.?° Seurat provides various functions for quality control, nor-
malization, feature selection and dimensionality reduction of the data.
After preprocessing, we use the ggplot2 package to create visualiza-
tions of the cell population proportions. This can be done by generat-
ing bar plots that represent the proportions of different cell types or
clusters identified in the data. To analyze cell-cell communication, we
utilize the CellChat package.?! CellChat provides methods to identify
and characterize intercellular communication networks within single-

cell data. It allows you to explore the interactions between different

cell types and identify key signaling pathways. We use the Dorothea®?
package. Dorothea provides a comprehensive collection of transcrip-
tion factor binding site predictions, which can be used to evaluate the
activity of specific transcription factors in the single-cell data. This
analysis helps in understanding the regulatory mechanisms underlying
gene expression patterns. To assess the activity of tumor-related

2324 tilizes

pathways, you can employ the progeny package. Progeny
gene expression data to calculate pathway activity scores, allowing
you to evaluate the activation or inhibition of specific pathways in the
single-cell data. This analysis provides insights into the functional

states of cells within the tumor microenvironment.

2.3 | Functional enrichment analysis of PPAR
related genes was performed

ClusterProfile?>2¢

was used for pathway enrichment analysis, which
could help us find biological pathways that were significantly enriched in
a given gene set, thereby revealing the functional significance of changes
in single-cell gene expression. Next, the results of the enrichment analy-
sis were visualized using the gene set enrichment analysis (GSEA)?” 27
package. GseaVis offers interactive charts and visualization tools to
explore enriched gene sets and their relationships in single-cell data.
Finally, RCircos was used to map the chromosomal position. RCir-
cos is an R package for creating circular graphs that visualize genomic
data, including the locations of genes on chromosomes. In single-cell
analysis, RCircos can be used to visualize the genomic location of a
specific gene or set of genes in a circular layout, thereby exploring

spatial relationships and genomic organization.

24 | HNSC subtypes and prognostic model
analysis of PPAR related genes

Least absolute shrinkage and selection operator (LASSO) and Cox

t.30

regression models were constructed using gimnet.>™ Survminer draws

the survival curve, ggplot2,32

and ggpubr draw violin drawings. The
timeROC333* package plots the receiver operating characteristic
(ROC) curve. Pheatmap draws heat maps and gsva packets calculate
channel scores. The immuno-oncology biological research (IOBR)
package was evaluated and the proportion of immunoinfiltrated cells
was calculated. Survminer draws the survival curve. The Consensu-

sClusterPlus package was used for consistent cluster analysis.

25 |
analysis

Immunohistochemical analysis and validation

The Human Protein Atlas (HPA) is a comprehensive and publicly avail-
able database that provides valuable information on the expression
patterns and subcellular localization of proteins in various human tis-
sues and cells. It aims to map the human proteome by systematically

profiling the expression of proteins across different tissues and cell
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types. The HPA database integrates data from multiple sources,

including immunohistochemistry, immunofluorescence and RNA
sequencing (RNA-seq), to provide a comprehensive view of protein
expression in human tissues. It covers a wide range of tissues, includ-
ing major organs, such as the brain, heart, liver and kidney, as well as
specific cell types, such as immune cells and stem cells. The database
provides detailed information on the expression levels of proteins,
their subcellular localization and their tissue specificity. It also includes
images and annotations that allow users to visualize and interpret the
data. Additionally, the HPA database provides access to transcrip-
tomic data, enabling users to explore the correlation between mRNA

expression and protein abundance.

2.6 | PPAR-related signature and energy
metabolism pathway

The energy metabolism pathways include thiamine metabolism, tryp-
tophan metabolism, tyrosine metabolism, phenylalanine metabolism,
sphingolipid metabolism, starch and sucrose metabolism, propanoate
metabolism, pyruvate metabolism, retinol metabolism, other glycan
degradation, caffeine metabolism, fatty acid degradation, lysine degra-
dation, glutathione metabolism and glycolysis gluconeogenesis. The
PPAR genes were analyzed using the energy metabolism pathway
with Pearson's correlation coefficient.

3 | RESULTS

3.1 | Single-cell RNA-seq analysis for HNSC

The overall study design is presented in Figure 1. Initially, we down-
loaded single-cell RNA-sequencing (scRNA-seq) data from five tumor
and five normal tissues from the gene expression omnibus (GEO)
database to investigate the characteristics of tumor-infiltrating
immune cells. After filtering the single-cell data, we clustered and
annotated a total of 20,313 cells from tumor and normal tissues into

five cell types, including natural killer cells, mast cells, myeloid cells, B
cells and T cells, as shown in Figures 2A,B and S1. Moreover, the cell
type marker genes were specifically expressed in the corresponding
cell population, indicating the accuracy of cell annotation, as depicted
in Figure 2C,D. The proportion of cells in each patient is illustrated in
Figure 2E. Furthermore, we performed differential expression analysis
on each cell type between the tumor and normal tissue. The results
revealed that the transcriptome features of T cells from tumor and
normal tissue were the most different, with 869 differentially
expressed genes (DEGs), as shown in Figure 2E. We also conducted
transcription factor analysis across various cell types between tumor
and normal tissues, as depicted in Figure 3A,B. In addition, we exam-
ined the expression correlation between various cell types and the pri-
mary tumor pathways between tumor and normal tissues, as
illustrated in Figure 3C,D. Analysis of intercellular communication
revealed that there were close communication links between cells,
and T cells communicated more strongly with other cell populations in
the tumor tissue, as shown in Figure 3E.

3.2 | PPAR signature in HNSC single-cell samples

To investigate the role of the PPAR signature in HNSC, we calculated
the PPAR signature of each cell and compared the PPAR signature
between tumor and normal tissues (Figure 4AB). As shown in
Figure 4C, most cell types from tumor tissues had a higher PPAR sig-
nature than those from normal tissues, such as T cells and myeloid
cells (Figure 4C). Then, we divided cells into PPAR signature-high and
PPAR signature-low based on the median value of PPAR signature
score (Figure 4D). Furthermore, 187 up-regulated and 43 down-
regulated DEGs were identified in PPAR signature-high cells and
DEGs were selected with adjusted P-values <0.05 and |logFC| > 0.25
(Figure 4E). GSEA analysis showed that oxidative phosphorylation,
MTORC1 signaling, epithelial mesenchymal transformation and G2M
in PPAR
signature-high cells (Figure 4F). The detailed model information can

checkpoint pathways were significantly up-regulated

be seen in Table S1.

PPAR related genes TCGA-HNSC
Prognostic GSE41613
BEELS8024 model GSE65858
| A
[ | [ |
DEG Enrichment Enrichment DEG survival
analysis analysis analysis analysis analysis
TE analvsis Cellchat Immunotherapy Response
Y analysis Cohort: IMVigor210 and PRIJEB23709 FIGURE 1 The flowchart of the
study design.
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3.3 | Identification of PPAR-related DEGs

As depicted in Figure 5A, DEG analysis revealed that there were 1774
up-regulated and 656 down-regulated genes in HNSC tissues com-
pared with normal tissues. Additionally, our data indicated that PPAR-
related genes exhibited differential expression between tumor and
normal tissues. Specifically, up-regulated PPAR-related genes includ-
ing FABP6, MMP1, FABP5, SCD, OLR1, SCD5 and FADS2 were
highly expressed in tumor tissues, while down-regulated PPAR-related
genes including SORBS1, FABP3, PPARG, ACOX2, FABP7, AQP7,
PLIN1, ADIPOQ, HMGCS2 and SLC27Aé were highly expressed in
normal tissues, as shown in Figure 5B. The results based on HPA and
GEPIA database analysis showed that at both the protein and mRNA
levels, FABP6 and FABPS5 exhibited higher expression in tumor sam-
ples while both HMGCS2 and SLC27A6 exhibited significantly higher
expression in normal samples (Figure 5C-F). The circle diagram in
Figure 5G shows the chromosomal locations of the 17 PPAR-related
DEGs. Moreover, correlation analysis showed that the expression of
each of the 17 PPAR-related DEGs mostly exhibited a positive corre-
lation, as depicted in Figure S2. Notably, the waterfall plot revealed
that PPAR-related genes were mutated, with the top three mutated

genes including SORBS1, SLC27A6 and MMP1 having a mutation fre-
quency >10%, as shown in Figure 5H.

3.4 | Prognostic model development and
validation of overall survival based on PPAR-
related genes

Then we constructed a prognostic model based on seven PPAR
related gene according to the LASSO-Cox regression analysis
(Figure S3). The following formula was used: risk score = —0.24334 x
ACAA1 — 0.14841 x ACOX3 +0.048727 x ACSL4 —0.50133
x ACSL6 + 0.070616 x MMP1 + 0.169386*PCK1 + 0.145317 x
PPARG. Afterwards, we calculated the risk scores for each sample in
the TCGA-HNSC cohort and divided then into high- and low-risk
groups based on the median value of risk score. As shown in
Figure 6A, our analysis results showed a higher mortality rate in the
high risk patients based on the distributions of risk scores and survival
status. Principal component analysis indicated that the classification
was satisfactory based on risk score (Figure 6B). Notably, a marked

difference was detected in the overall survival (OS) time between
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these two groups and patients with low risk were more likely to have
lower death rate (Figure 6C). The ROC curve demonstrated that the
prognostic model had high accuracy in predicting 1, 2 and 3 year
survival of HNSC patients (Figure 6D). Moreover, risk score was sig-
survival status

nificantly associated with including OS and

progression-free survival (PFS), but not age, stage or gender
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(Figure 6E). Gene set variation analysis (GSVA) showed the top 10 hall-
mark pathways up-regulated in high risk patients, such as hypoxia and
kras_signaling_up (Figure 6F). Then, we used two external datasets
(GSE41613 and GSE65858) to verify the accuracy of the prognostic
model and similar results were obtained, suggesting the prognostic
model was reliable and repeated (Figure 7).
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3.5 | Riskscore predicted immunotherapy
response and molecular clusters

To illustrate the relationship between immune characteristics and risk
score, we used the “ESTIMATE” R package to calculate the Immune-
Score and found that patients with a low risk score had higher levels
of ImmuneScore, as shown in Figure 8A. We then examined the abun-
dance of tumor infiltrating immune cells between low- and high-
risk-score groups and found that low-risk-score patients had a higher
proportion of T cells, CD8+ T cells and cytotoxic lymphocytes, as
shown in Figure 8B. We also analyzed the expression of immune
checkpoint genes between low- and high-risk-score groups and found
that patients with low risk score highly expressed PDCD1, IL23A,
TNFRSF14, JAK2 and TNFRSF, suggesting that they may benefit from
immunotherapy, as shown in Figure 8C. Our data further showed that
a higher proportion of patients in the low-risk group responded to
immunotherapy, as shown in Figure 8D,E, and patients with low risk
had longer survival time in the immunotherapy cohort, as shown in
Figure 8F. Furthermore, using the “ConsensusClusterPlus” R package,
we identified two molecular clusters based on seven model genes in
HNSC and found that patients in cluster 2 had a survival advantage
tendency, as shown in Figure 9A,B. This finding was validated in the
GSE41613 dataset, as shown in Figure 9C,D. We observed significant
differences in the methylation, amplification and deletion frequency
of immunomodulation-related genes between cluster 1 and cluster
2 patients, as shown in the heatmap in Figure 9E. Overall, our findings
suggest that risk score can predict immunotherapy response and that
molecular clustering based on model genes can identify patients with

different survival outcomes.

3.6 | PPAR-related signature and energy
metabolism pathway

The thiamine metabolism, tryptophan metabolism, tyrosine metabo-
lism, phenylalanine metabolism, sphingolipid metabolism, starch and
sucrose metabolism, propanoate metabolism, pyruvate metabolism,
retinol  metabolism, other glycan  degradation, caffeine
metabolism, fatty acid degradation, lysine degradation, glutathione
metabolism and glycolysis gluconeogenesis pathways were validated
closely in relation to the PPAR-related genes. Therefore, we suggest
that the PPAR genes can differentiate energy metabolism and distin-
guish the heterogeneity of energy metabolism in the head and neck

(Figures 10 and 11).

4 | DISCUSSION

This study aimed to investigate the characteristics of tumor-
infiltrating immune cells in HNSC using scRNA-seq analysis. The
scRNA-seq data from tumor and normal tissues were downloaded
from the GEO database and analyzed. Transcription factor analysis

and pathway analysis showed distinct patterns of gene regulation and

signaling pathways in different cell types between tumor and normal
tissues. Furthermore, the role of the PPAR signature in HNSC was
investigated. The PPAR signature was calculated for each cell, and it
was found that most cell types in tumor tissues had a higher PPAR
signature compared with normal tissues. Differential expression analy-
sis identified up-regulated and down-regulated genes in PPAR
signature-high cells. Gene set enrichment analysis revealed the up-
regulation of pathways related to oxidative phosphorylation,
MTORC1 signaling, epithelial-mesenchymal transition and the G2M
checkpoint in PPAR signature-high cells. Moreover, PPAR-related
genes were found to be differentially expressed between tumor and
normal tissues. Up-regulated PPAR-related genes were highly
expressed in tumor tissues, while down-regulated PPAR-related genes
were highly expressed in normal tissues. The expression of PPAR-
related genes showed a positive correlation, and several genes were
found to be frequently mutated in HNSC. Based on the PPAR-related
genes, a prognostic model for OS was developed using LASSO-Cox
regression analysis. The model showed significant differences in OS
between high-risk and low-risk groups. The model was validated in an
external dataset, demonstrating its reliability. The risk score derived
from the model was associated with immune characteristics, immuno-
therapy response and molecular clusters in HNSC. Therefore, we
believe that PPAR-related genes have important research value. Next,
we try to further reveal the great significance of PPAR-related genes
for targeted therapy of solid tumors by comparing the studies of
PPAR in other solid tumors.

Among the five mammalian ACSL family members, ACSL1 and
ACSL3 are involved in facilitating cancer progression, while ACSL5
participates in the pro-apoptotic sensing of cells, acting as a tumor
suppressor.>> ACSL4 activates long-chain fatty acids to initiate a num-
ber of intracellular lipid metabolic pathway.?¢ Emerging evidence
shows that dysregulated expression of ACSL4 is tightly associated
with various diseases, and especially with cancers.®” The mechanisms
of ACSL4 involvement in tumor development may include
iron-dependent, non-apoptotic and cell death pathways®® Phospho-
enolpyruvate carboxykinase 1 (PCK1),%° a key rate-limiting enzyme in
gluconeogenesis, catalyzes the conversion of oxaloacetate to phos-
phoenolpyruvate. The PCK1 expression in gluconeogenic tissues is
tightly regulated during fasting. In tumor cells, PCK1 is regulated in
a cell-autonomous manner rather than by hormones or nutrients in
the extracellular environment. Interestingly, PCK1 has an anti-
oncogenic role in gluconeogenic organs (the liver and kidneys), but a
tumor-promoting role in cancers arising from non-gluconeogenic
organs. Recent studies have revealed that PCK1 has metabolic and
non-metabolic roles in multiple signaling networks linking metabolic
and oncogenic pathways. Aberrant PCK1 expression results in the
activation of oncogenic pathways, accompanied by metabolic repro-
gramming, to maintain tumorigenesis. In terms of molecular pathways,
we found significant changes in oxidative phosphorylation, MTORC1
signaling, epithelial mesenchymal transformation and G2M check-
points in different molecular subtypes of the PPAR pathway. Oxida-
tive phosphorylation, MTORC1 signaling, epithelial mesenchymal
transformation and G2M checkpoint pathway were significantly
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upregulated in PPAR cells. Several studies have investigated the cross-
talk between PPAR and MTORC1 signaling pathways and their impact
on various diseases, including cancer, metabolic disorders and neuro-
degenerative diseases. These studies have revealed that PPAR activa-
tion can modulate MTORC1 activity and downstream signaling
pathways, leading to changes in cellular processes such as autophagy,
lipid metabolism and inflammation.

Furthermore, emerging evidence suggests that the interaction
between PPAR and MTORC1 may have therapeutic implications. For
instance, the use of PPAR agonists, such as fibrates and thiazolidine-
diones, has been explored as a potential strategy to modulate
MTORC1 activity and improve the outcomes of various diseases.

Recent studies* have shown that PPARs play a significant role in

regulating oxidative phosphorylation. Activation of PPARs has been
found to enhance mitochondrial biogenesis, increase the expression
of genes involved in oxidative phosphorylation, and improve mito-
chondrial function. This suggests that PPARs may have a direct impact
on the efficiency of ATP production in cells. Furthermore,
researchers* have also investigated the crosstalk between PPARs and
other signaling pathways involved in oxidative phosphorylation. For
example, PPARs have been found to interact with AMP-activated pro-
tein kinase, a key regulator of cellular energy metabolism. This interac-
tion can modulate the activity of oxidative phosphorylation enzymes
and influence ATP production. Additionally, dysregulation of PPARs
and oxidative phosphorylation has been implicated in various meta-
diabetes and cardiovascular

bolic disorders, including obesity,
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diseases. Understanding the molecular mechanisms underlying the
interplay between PPARs and oxidative phosphorylation may provide
insights into the development of therapeutic strategies for these con-
ditions. PPARa regulates lipid metabolism in the liver, the organ that
primarily controls nutrient/energy homeostasis throughout the body,
abnormalities of which may lead to hepatic steatosis, steatohepatitis,
fatty fibrosis and liver cancer.® Therefore, we believe that PPAR-
related genes may promote the progression of head and neck cancer
by affecting the above pathways. However, since this paper is only
data-level analysis, further in vitro and in vivo animal model experi-
ments still need to be verified.

In addition, MMP1 was found to be associated with thiamine
metabolism, tryptophan metabolism, tyrosine metabolism, phenylala-
nine metabolism, sphingolipid metabolism, starch and sucrose metab-
olism, propanoate metabolism, pyruvate metabolism, retinol
metabolism, other glycan degradation, caffeine metabolism and other
related pathways. Matrix metalloproteinase-1 (MMP-1) is an enzyme
responsible for the degradation of extracellular matrix components
such as collagen, elastin and gelatin, especially interstitial collagen
types I, Il and lll. The activity of MMP-1 is strictly regulated at multiple
levels, such as gene transcription, preenzyme activation and enzyme
inhibition. Dysregulation of MMP-1 metabolism is associated with
various pathologic processes such as cancer, fibrosis, arthritis and car-
diovascular diseases. For example, in cancer, overexpression of
MMP-1 can promote tumor growth, invasion and metastasis by
degrading the extracellular matrix and promoting angiogenesis. Con-
versely, inhibiting the activity of MMP-1 has been explored as a strat-
egy for cancer treatment. In fibrotic diseases, MMP-1 can promote
tissue remodeling and fibrosis by degrading collagen and other extra-
cellular matrix components. Therefore, regulating the activity of
MMP-1 is considered a potential treatment for these diseases. Over-
all, MMP-1 plays a key role in the metabolism of the extracellular
matrix, and dysregulation of its metabolism can lead to various patho-
logical conditions. Further studies are needed to fully understand the
mechanisms of MMP-1 metabolism and to develop effective thera-
peutic strategies against MMP-1.

In addition, the research has some other limitations. The research
involves multiple cancer types and different sample sources, and there
is considerable heterogeneity between the data. This makes cross-
cancer comparisons and analyses difficult and additional data stan-
dardization and correction may be required. The samples in this
research are mainly from cancer patients, and there is a lack of control
samples from healthy people. This makes it difficult to identify which
genetic variants are associated with cancer rather than normal physio-
logical changes. The research focused primarily on cancer patients in
the USA and lacked samples from other regions and ethnicities. This
may limit the generalizability of the findings, as different ethnic and
geographical backgrounds may have different cancer pathogenesis
and genetic variations. Although the data from the research has been
publicly released, owing to the complexity and scale of the data, there
are still certain thresholds for non-expert researchers to access and
analyze the data. This may limit the utilization and discovery of the

data by the broader scientific community.

In conclusion, this study provides insights into the characteristics
of energy metabolism the role of PPAR-related genes in HNSC. The
developed prognostic model based on PPAR-related genes shows
promise in predicting patient outcomes and immunotherapy response.
These findings contribute to a better understanding of HNSC and
may guide future therapeutic interventions.
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