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Abstract

Purpose With the change of lifestyle, the occurrence of coronary artery disease presents a younger trend, increasing
the medical and economic burden on the family and society. To reduce the burden caused by this disease, this study
applied LASSO Logistic Regression and Random Forest to establish a risk prediction model for premature coronary
artery disease(PCAD) separately and compared the predictive performance of the two models.

Methods The data are obtained from 1004 patients with coronary artery disease admitted to a third-class hospital

in Liaoning Province from September 2019 to December 2021. The data from 797 patients were ultimately evaluated.
The dataset of 797 patients was randomly divided into the training set (569 persons) and the validation set (228
persons) scale by 7:3. The risk prediction model was established and compared by LASSO Logistic and Random Forest.

Result The two models in this study showed that hyperuricemia, chronic renal disease, carotid artery atherosclerosis
were important predictors of premature coronary artery disease. A result of the AUC between the two models
showed statistical difference (Z=3.47, P<0.05).

Conclusions Random Forest has better prediction performance for PCAD and is suitable for clinical practice. It can
provide an objective reference for the early screening and diagnosis of premature coronary artery disease, guide
clinical decision-making and promote disease prevention.
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Introduction

Coronary artery disease (CAD) has become a lead-
ing cause of mortality in many countries. Although the
mortality rate of CAD has declined in developed coun-
tries, it is rising in developing countries or countries in
economic transition [1]. According to the Global Bur-
den of Disease report, about 9.14 million people world-
wide died from CAD in 2019 [2]. The increase in deaths
in China accounts for about 38.2% of the global increase
in deaths from CAD [3, 4]. As the population of CAD
patients becomes younger, the third National Cholesterol
Education Program Adult Treatment Group Guidelines
(NECP ATP III) defines men<55 years and women<65
years with CAD as having premature coronary artery dis-
ease (PCAD) [5]. The US NHIS data indicate that among
Asian Indians and “other Asians” prevalence of PCAD
higher than Whites adults [6, 7]. Because there are few
typical symptoms before the onset of PCAD, it is often
not diagnosed or misdiagnosed [8]. Studies have con-
firmed that the degree of fibrosis of early-onset coronary
plaques is higher than that of late-stage coronary artery
plaques [9]. As a key event in the inflammatory process
of atherosclerosis, fibrosis participates in the regulation
of plaque stability, and the instability of plaques causes
thrombosis. If it is not treated in time, it is very likely
to be life threatening [10]. Therefore, early screening for
PCAD is the key to guiding clinical decision-making and
promoting disease prevention.

The Framingham risk assessment model is a classic
cardiovascular disease assessment tool widely recog-
nized domestically and in foreign countries. However,
some studies have pointed out that this model cannot
effectively predict the incidence risk of PCAD in healthy
young people with family history [11]. Although coro-
nary angiography is the gold standard for the diagnosis
of PCAD, it is not suitable as an early detection tool for
asymptomatic people because of its high price, invasive
nature, and potential for allergic reactions to the con-
trast agent. At present, researchers in many countries
have attempted to identify predictors of cardiovascu-
lar disease, and some reports suggest that factors such
as C-reactive protein, hypercholesterolemia, high-den-
sity lipoprotein cholesterol, family history of CAD, and
smoking can predict PCAD risk in patients [12—15]. For
these predictors, a variety of cardiovascular risk assess-
ment tools have been developed and improved. However,
a PCAD risk prediction model has yet to be developed.
Therefore, the establishment of an accurate prediction
model of PCAD that can reduce unnecessary invasive
examinations of patients and ensure effective screening
and diagnostic ability for PCAD has become a research
hotspot.

In this study, we constructed a risk prediction model
for PCAD that is based on traditional logistic regression
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analysis. However, the conventional linear regression
cannot solve the problem of data collinearity. Therefore,
we used a machine learning method called LASSO to
reduce the dimension and deal with variable collinear-
ity. Machine learning can better mine higher dimensions,
complex structures, and essential medical data compared
with traditional statistical methods [16, 17]. Random for-
est (RF) models can handle the problem of nonlinearity
and data loss and assign importance scores to each fea-
ture variable in classification to screen for the variable
that plays an essential role in the category [18, 19]. At the
same time, the RF approach does not need to consider
multivariate collinearity or make a variable selection. The
purpose of this study was to compare the LASSO logistic
regression and RF methods for predicting the risk PCAD
and to develop a practical and applicable risk prediction
model.

Methods

We conducted this retrospective study to construct and
validate a risk prediction model for PCAD and used
STROBE and TRIPOD as a guide [20, 21]. This study was
approved by the ethics committee of The Second Affili-
ated Hospital of Shenyang Medical College (2022-Shen
Medical second hospital-019). Along with confirmation
that the study complies with all regulations and confir-
mation that informed consent was obtained.

Data sources

The data are from September 2019 to December 2021.
We screened electronic data for cases in the Department
of Cardiology ward of a class III hospital in Liaoning
Province, China. Finally, 1004 patients were confirmed.

Study population

Inclusion criteria: All patients diagnosed with CAD who
visited the cardiology ward from September 2019 to
December 2021. Exclusion criteria:patients with severe
cognitive impairment, comorbidity with other serious
diseases, previous coronary artery bypass graft treat-
ment or heart transplantation, chest pain such as sus-
pected aortic coarctation, and pulmonary embolism were
excluded. The final loss was 20.5%. The data from 797
patients were ultimately evaluated. 226 of these patients
were diagnosed with PCAD. (The process of the study
design was shown in Fig. 1).

Candidate variables

We extracted sociodemographic, disease-related,
and laboratory-related data from the patients’ medi-
cal records. Continuous variables included age, systolic
blood pressure, diastolic blood pressure,Kalium(K),
chlorine(Cl),urea, creatinine, total cholesterol (TC), fast-
ing plasma glucose, low-density lipoprotein cholesterol
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Fig. 1 Study cohort and exclusions

(LDL-C), high-density lipoprotein cholesterol (HDL-
C), and triglycerides (TG) levels. Categorical variables
included sex, smoking history, and alcohol consumption
history, surgical history, diabetes, hypertension, over-
weight, chronic kidney disease(CKD), carotid artery ath-
erosclerosis (CAA), hyperuricemia (HUA), Hyperlipemia.

Definition and measurement of relevant indica-
tors were as follows. Overweight was defined as body
mass index>24.0 kg/m?. HUA was defined as non-
daily fasting blood UA levels>420 mol/L in males and
360 mol/L in females under normal purine diet status
[22]. Chronic kidney disease was defined as structural
or functional kidney abnormalities with health effects
for >3 months [23]. The 2007 Chinese guidelines for
the prevention and treatment of dyslipidemia for hyper-
lipidemia were as follows: TC>5.18 mmol/L, LDL-C
3.37 mmol/L, HDL-C<1.04 mmol/L, TG = 1.7 mmol/L
[24]. Hcy>15 mol/L serves as the diagnostic criterion for
hyperhomocysteinemia (Hhcy). The criteria for CAA are
based on carotid intra-media thickness: < 1.0 mm means

that the patient has no carotid stiffness, .0~1.5 mm indi-
cates an irregular bulge of the thickened wall of the inner
middle membrane, and 1.5 mm means atherosclerosis
and simultaneous alteration of various arterial structures
such as lumen protrusion [25].

Grouping standard

According to the World Health Organization/Interna-
tional Society of Cardiology CAD is defined as: i)>=50%
stenosis, ii) involvement of at least one main coronary
artery, in particular, left main trunk, anterior descend-
ing branch [6]. And NECP ATP III PCAD is defined that
males<55 or female<65 [5]. In conclusion,all 3 criteria
must be met to define PCAD.

Data analysis

Statistical analysis was performed using R software (ver-
sion 4.0.3). Measurement data consistent with the normal
distribution are represented as meanztstandard devia-
tion and were compared using two independent sample
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t-tests. We used the rank-sum test when data did not
conform to the normal distribution (P,s, P,5) description.
The count data is expressed in frequency percentage (%).
The “caret” package was applied to group 797 partici-
pants 7:3 randomly, including 569 in the training set and
228 in the validation set.

Model construction, comparison, and validation

All continuous variables were standardized before
LASSO.We constructed the LASSO model and then
screened the predictors using the LASSO regression in
the “glmnet” package. LASSO can screen the variables
and reduce the complexity of the model through a series
of parameters, thereby avoiding overfitting. The com-
plexity of LASSO is controlled by A, which ultimately
produces a model with fewer variables. The k-fold cross-
validation was run using R software (10-fold cross-valida-
tion in this study), and lambda (\) values were calculated,
with the value with the smallest error serving as the cri-
terion for screening predictors. Variables selected by

Table 1 Baseline characteristics of the study cohort

Characteristics classify PCAD(n=228) non- P-
PCAD(n=569) value
Age 64.78+11.24 56.64+6.31 <0.001
Sex Male 135(59.1%) 389(68.2%) 0.01
Female 93(41.3%) 180(32.2%)

Overweight yes 80(35.2%) 165(29.2%) 0.11
TG 1.75+1.72 1.84+1.28 0.10
HDL-C 1.68+6.55 1.21+£041 0.29
LDL-C 3.14+1.05 3.80+14.49 0.28
TC 4874135 487+1.35 0.67

K 5.80+24.46 1249416995 036
@ 102.16+7.64 101.74+£1039 052
Urea 6.10+2.21 6.13+£12.75 0.95
Cr 7843+33.25 7801+31.56 0.87
FPG 740+3.27 707+287 0.17
SBP 148312681 150.58+2136 0.1
DBP 85.29+16.37 86.55+15.11 0.30
Surgical history  yes 63(28.2%) 121(21.3%) 0.05
Smoking yes 64(28.3%) 194(34.4%) 0.10
Drinking yes 55(24.5%) 154(27.3%) 038
Hypertension yes 176(77 4%) 367(64.4%) <0.001
DM yes 98(43.3%) 203(36.3%) 0.12
HUA yes 64(28.6%) 36(6.2%) <0.001
CKD yes 66(29.5%) 26(4.1%) <0.001
Hhcy yes 82(36.6%) 108(19.2%) <0.001
CAA yes 154(68.2%) 100(18.3%) <0.001
Hyperlipemia yes 47(21.1%) 113(20.2%) 0.81

TG=triglycerides; HDL-C=high-density lipoprotein-cholesterol; LDL-C=low-
density lipoprotein-cholesterol; TC=total cholesterol; Cr=creatinine;
FPG=fasting plasma glucose; SBP=systolic blood pressure; DBP=diastolic
blood pressure; DM=diabetes; AF=atrial fibrillation; HUA=hyperuricemia;
CK-MB=creatine kinase  isoenzyme;  Hhcy=Hyperhomocysteinemia;
CAA=carotid artery atherosclerosis; CKD=Chronic renal diseas; Cl=chlorine;
K=Kalium
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LASSO were then subjected to logistic regression using
the “rms” package. Use the “regplot” package to build the
nomogram model.

The RF model was built using the “Random Forest”
package. The RF model includes all predictive variables,
draws samples from the database using the bootstrap
resampling method, and uses the decision tree to model
each set of bootstrap samples and combine multiple deci-
sion trees. Two parameters (ntree and mtry) play impor-
tant roles in establishment of the model. The RF model
needs to be debugged to optimize its effect to reduce the
prediction error rate. We used the “caret” software pack-
age to rank the observed importance of the variables in
the model following the rule that the greater the decrease
in accuracy, the more significant the role of the variable
in the prediction accuracy.

Finally, both models were evaluated for prediction per-
formance using the validation set. The “pROC” package
was used to generate receiver operating characteristic
(ROC) curves, and the “rms” package was used to gener-
ate calibration curves.The ROC differences between two
models was analyzed by the DeLong method [26].

Results

In our study, 797 individuals met the inclusion criteria;
The 135 male PCAD patients (45-55 years old) and the
93 female PCAD patients (43—-65 years old). The 389
male non-PCAD patients (36—88 years old) and the 180
female non-PCAD patients (32-88years old). They were
randomly divided into a training set and a validation set
in a 7:3 ratio, with 569 patients in the training set and 228
patients in the validation set. All patients had completed
the relevant examination. The primary characteristics of
the patients in the two sets are listed in Table 1.

We included PCAD as the dependent variable in the
LASSO regression and included 24 variables associ-
ated with PCAD in the LASSO regression as indepen-
dent variables based on a literature review. Dashed
vertical lines were plotted for the best values using one
standard error, and the best values were selected using
10-fold cross-validation. Four significant indicators
with a non-zero coefficient were selected: HUA, CKD,
Hhcy and CAA (Supplementary Fig. 1). A PCAD risk
prediction model was constructed based on these four
predictors (Fig. 2). Then the logistic regression analy-
sis results revealed that CKD(Waldy?=49.10,0dds ratio
[OR]=13.70, 95% confidence interval [CI]: 6.73-29.26,
p<0.001),HUA(Waldy’=21.35,0R=4.85, CL: 2.50-9.57,
p<0.001),Hhcy(Waldy*=10.46,0R=2.35, 95% CI: 1.40-
3.97, p<0.001) and CAA (Waldy’=96.18,0R=11.70, 95%
CI: 7.24-19.38, p<0.001) were the most important fac-
tors affecting the development of PCAD in the patients
(all, p<0.05) in Table 2. A model was constructed using
logistic regression:
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a Prediction model
Variables Estimate OR(95C1%) P
Intercept -2.72 s 0.07(0.04-0.09) <0.001
Hhcy 0.86 - 2.35(1.40-3.97) <0.001
HUA 1.58 - 4.85(2.50-9.57) <0.001
CKD 2.62 o 13.70(6.73-29.26) <0.001
CAA 246 . 11.70(7.24-19.38) <0.001
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Fig. 2 Based on the predictors selected by LASSO. (a) A forest plot based on the predictors selected by LASSO. (b) PCAD nomogram prediction model

Table 2 Logistic regression analysis of risk predictors of morbidity in patients with PCAD

Intercept and variables Estimate  SE Waldy? Prediction model  Confidence interval(2.5%)  Confidenceinterval(97.5%)
P-value  Odds
ratio
Intercept -2.72 0.22 157.44 <0.001 0.07 0.04 0.09
Hhcy 0.86 027 10.46 <0.001 235 1.40 3.97
HUA 1.58 034 2135 <0.001 485 250 9.57
CKD 262 037 49.10 <0.001 13.70 6.73 29.26
CAA 246 025  96.18 <0.001 11.70 7.24 19.38

Ymodel = —2.72 + 0.86 - Hhey + 1.58 - HUA +2.62 - CKD + 2.46 - CAA

The variables entering the logistic regression model
are used to construct the PCAD nomogram prediction
model (Fig. 2).

In our RF model, the mtry value represents the number
of candidate variables in each node. An appropriate mtry
value can improve the classification ability of the model.
In RF model, the lowest model error rate was 0.10 when
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Table 3 Comparison of the predictive performance of the two models
Cutoff vale specificity sensitivity Kappa PPV NPV
RF 0.39 0.63 092 0.55 0.63 0.86
LASSO-Logistic 0.39 044 0.93 037 0.73 0.81

PPV=positive predictive value;NPV=negative predictive value

mtry was 10. The ntree parameter refers to the number of
decision trees used during modeling. When the number
of decision trees is large enough, the error of the model is
very stable. In our model, when ntree was 1500, the error
rate tends to be stable. The RF model can calculate the
degree of influence of each independent variable on the
dependent variable and calculate the importance scores
according to two different standards. Based on the SHAP
method, in order, CAA, age, CKD, HUA and sex had the
highest contribution in PCAD prediction (Fig. 3).

HUA, CAA, CKA are significant predictors of PCAD,
using the three could differentiate two groups (Supple-
mentary Fig. 2). The specificity, sensitivity, PPV, NPV of
the RF model were higher than the LASSO Logistic in
the validation set (Table 3). The AUC (Area Under ROC
Curve) of the RF model and LASSO Logistic model were
0.91 (95% CI: 0.79-0.88) and 0.84 (95% CI: 0.74—0.84)
in the validation set separately. A results of the AUC
between the two models showed statistical difference
(Z=3.99, P<0.05) (Fig. 4). The two models were inter-
nally verified by the bootstrap self-sampling method,
and the calibration curve was obtained 50 times (Fig. 5).

The calibration curve shows the entirely consistent com-
parison of each model and the predicted and actual prob-
abilities of the model. The calibration curves of the two
models are close to the diagonal line (ideal prediction
situation, with a slope of 1), which shows that the predic-
tion ability of the models is acceptable.

Discussion

The prevalence of PCAD in all CAD was about 28.3%
in this study. Both the LASSO Logistic and RF models
showed that HUA, CAA and CKD were important pre-
dictors of PCAD. In the two models constructed in this
study, the discrimination and calibration ability of RF was
higher than that of LASSO Logistic models. The accuracy
of RF and LASSO Logistic models were 84.0% and 79.4%
respectively. Therefore, the RF model has higher applica-
tion value in PCAD risk prediction.

HUA as a non-traditional high-risk factor of CAD has
been confirmed to be involved in the occurrence and
development of CAD [27]. Our results showed that HUA
is an important predictor in the LASSO and RF models,
which is consistent with the results reported by Wang et
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al [28]. HUA contributes to the development of hyper-
tension, the increase of inflammatory markers, and the
impairment of glucose metabolism, which all may pro-
mote the occurrence of atherosclerosis or plaque rup-
ture alone or in combination [29]. However, Battaggia et
al. reported that HUA is not an independent influencing
factor of CAD [30]. Many studies in China have shown
that the UA level of patients aged>40 is positively cor-
related with CAD, which is similar to the results of our
study. However, the relationship between UA level and
CAD in patients aged<35 years is controversial, and it
may be impacted by gender. A study of American teen-
agers showed that increased UA level was related to
increased risk of various cardiovascular risk factors,
especially in women [31]. Wang et al. reported that the
predictive effect of UA on CAD in women is stronger
than that in men, both of which are similar to the results
of our study [32]. However, other studies report oppos-
ing results [33, 34]. In our study, the age of male patients
(51.52£0.17) was generally lower than that of female
patients (60.45%0.31), thus most of the female patients
were postmenopausal. The UA level of postmenopausal
women increases significantly, which may be related to
the decline of estrogen level after menopause and the
loss of estrogen to promote UA excretion, which may
lead to endothelial dysfunction [13, 35]. Elevated UA
levels and inflammatory markers are associated with

many cardiovascular risk factors, including hypertension,
hyperlipidemia, and obesity. However, the underlying
mechanism of how gender affects HUA is not clear, and
the relationship between gender and HUA in adolescent
patients requires further exploration.

In the two model of this study, CAA and CKD are
important factors of PCAD. The Kidney Disease guide-
line points out that all the CKD patients have a higher
risk of cardiovascular disease, and about 60.0% of CKD
patients are accompanied by cardiovascular disease [36,
37]. As the heart and kidney share the same pathophysi-
ological basis.When one organ is damaged, the other
organ will also be affected [38]. The mechanism may be
that CKD will lead to a significant increase in the con-
tent of asymmetric dimethylarginine, an inhibitor of
nitric oxide synthase, and accelerate the formation of
CAD [39-41]. CKD causes a systemic, chronic proin-
flammatory state contributing to vascular and myocardial
remodeling processes resulting in atherosclerotic lesions,
vascular calcification, and vascular senescence as well as
myocardial fibrosis and calcification of cardiac valves.
Hence CKD lead to an accelerated aging of the cardiovas-
cular system. A large sample study on the prevalence of
CKD among young patients with cardiovascular disease
showed, mortality risk of the patients aged 18-50 years
has been increased to 3.6 times compared to last year due
to the CKD [42]. Therefore, abnormal renal function and
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CAA pay a positive role in predicting the occurrence of
PCAD.

The evaluation and comparison results of the two mod-
els show that the performance of the RF model in this
study is better than that of the LASSO Logistic model. A
Chinese study used RF and LASSO Logistic regression
to predict the hospitalization expenses of patients with
chronic renal failure, and the results showed that the pre-
diction performance of RF model was better than that of
LASSO Logistic model [43]. Another study constructed
the prognosis model of diffuse large B-cell lymphoma,
which indicated that the prediction performance of
LASSO Logistic model was better than that of RF model
[44]. Therefore, there is no accurate conclusion about the
prediction performance of the two algorithms. The pos-
sible reasons of different research conclusions are the RF
does not limit the correlation between variables, while
the exclusion of highly correlated variables in LASSO
Logistic modeling often excludes important variables
highly correlated with response endpoints. Therefore, the
LASSO model may reduce the prediction performance.
Some researches show that it is more important to screen
variables correctly than modeling learning algorithm
[45].

There are several limitations in this study. First, the two
models have not been externally validated. In the future,
we can collect data from different hospitals to obtain
transportability the model by externally validate. Second,
the data of this study collected clinical cases,so other bio-
chemical indicators could not be analyzed. Finally, only
two algorithms are used to build the model. In the future,
other machine algorithms can be used to obtain more
accurate models.

Conclusion

HUA, CAA, CKA are significant predictors of PCAD
in this study. The two predictive models are established
for predicting the occurrence of PCAD. RF model has a
higher accuracy. Using the PCAD risk prediction model,
early screening of high-risk groups for PCAD can be
effectively conducted, and personalized intervention
plans for patients can be developed to prevent and delay
the occurrence of PCAD. Such screening would pro-
vide primary prevention for PCAD patients and would
improve the allocation of national medical and health
resources.
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