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Abstract

In football economics, a player’s transfer market value extends beyond performance metrics, with popularity playing a
crucial role in clubs’ decisions. Reputation indexes, reflecting a player’s standing in the industry, are derived from various
sources. Traditional metrics include goals, assists, and defensive prowess, while social media activity (likes on Facebook and
Instagram), press citations, and Wikipedia page views add a new dimension. This study utilized Fédération Internationale
de Football Association 19 data and a real-world statistical dataset, encompassing 54 features for 491 players across vari-
ous leagues. After adding valuable data and removing ineffective features and outliers, two filtering-based feature selection
methods identified the 20 most critical features for predicting market value. The study applied Extreme Gradient Boosting
and Adaptive Boosting regression models, along with their hybrid forms optimized by metaheuristic algorithms. The Extreme
Gradient Boosting optimized with the Ali Baba and Forty Thieves algorithm model showed the best performance, with a
99% match to actual values and a misestimation of around €1.9 million. Ensemble models, averaging predictions from all
hybrid models, provided reliable market value estimates. These insights help managers make informed decisions to improve
team performance and secure financial benefits for the club.

Keywords Market valuation - International reputation index - Football superstars - Filtering feature selection - Boosting

Tree Regression - Metaheuristic optimization algorithms

Introduction

The sports industry is a hub where diverse interests, span-
ning from political to public, intersect. The growing global
appeal of football is influenced significantly by both tradi-
tional and social media [1, 2]. An illustration of football’s
widespread viewership is the UEFA Euros final in 2021,
attracting an average live audience of 328 million people [3].
Success on the field is crucial for football clubs, leading to
increased financial gains when they progress to the knock-
out stage. Deloitte [4] reports that the top 20 clubs in turno-
ver, belonging to the “Big Five” European football leagues,
collectively generated revenues surpassing €9.200 million in
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the 2021-2022 season, slightly below the pre-COVID rev-
enues of €9.283 million in 2018-2019 season [5].

Football clubs aim to improve their performance by
recruiting new players, with options including loans, free
agent signings, or outright purchases. The latter involves one
club paying another a transfer fee for the player’s services,
necessitating negotiation between the involved clubs [6].
Striking a balance between the actual transfer fee and the
perceived value of a player is crucial to minimize potential
losses if the player underperforms. Beyond club considera-
tions, the transfer value is of interest to fans and analysts,
who evaluate whether the paid fee aligns with the player’s
abilities when a new player is acquired [7, 8].

In this context, researchers from different areas of knowl-
edge have begun to specialize in evaluating players and
studying the factors that affect the market value to predict
transfer fees [9, 10]. The player’s performance, position (for-
ward, midfielder, defender, or goalkeeper), club, and physi-
cal characteristics (e.g., height and age) are the variables
most often used in such studies [11-13]. Moreover, Bar-
buscak [14] investigated football player market values using
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data from transfermarkt.com. Employing a linear regression
analysis, the study found that factors such as remaining years
on contracts significantly influenced market values. This
aligns with previous research by Carmichael et al. [15] and
Frick [16].

Furthermore, the noteworthy influence of popularity on
market value, with implications for predicting transfer fees,
has been recognized. Academic theory on superstardom, as
outlined by Rosen [17] and Adler [18], proposed that the
emergence of superstars is only partially determined by
actual talent in impacting sports competition outcomes;
additional factors such as popularity are also pertinent.
Player popularity is also an indicator for football clubs and
extends its influence to jersey and ticket sales [19]. In their
study of the Spanish football league, Garcia del Barrio and
Pujol [20] identified both performance and popularity, meas-
ured through Google search hits, as determinants of football
player market value. Kiefer [21] utilized Facebook likes to
gauge player popularity and investigate its correlation with
performance in the Euro 2012 tournament. Mueller et al.
[11] adopted various popularity metrics, including Reddit
mentions and YouTube appearances for market value evalu-
ation, and others considered data from Google Trends [22]
and Wikipedia views [23]. These studies consistently reveal
the statistically significant impact of popularity in estimat-
ing market value and predicting football player transfer fees.
Consequently, it is reasonable to consider popularity as a
crucial factor affecting the transfer value of players, particu-
larly due to its accessibility.

Artificial intelligence and machine learning techniques
have become transformative tools in the fields of long-term
player development, performance evaluation, and injury
prevention [24, 25]. These technologies enable more accu-
rate analysis and prediction of player performance, as well
as the identification of potential injury risks, significantly
enhancing decision-making processes in sports manage-
ment. For instance, Teixeira et al. [26] tested a machine
learning model for predicting high-intensity actions and
body impacts in youth football training. Mandadapu et al.
[27] applied machine learning algorithms to predict Premier
League match outcomes by analyzing historical data and
identifying key features that influence results. The research
also aims to assist in setting bookmaker odds, providing
insights into the role of various variables in shaping match
outcomes and opening new opportunities for decision-
making in sports forecasting and betting. Yang et al. [28]
advanced previous studies on transfer fees in European foot-
ball by applying machine learning methods, such as random
forest and quantile additive models, to capture non-linear
effects. Analyzing data from transfermarkt.de, they trained
models on pre-COVID-19 transfers and compared prediction
accuracy before and during the pandemic. Their findings
revealed that models trained pre-COVID-19 significantly
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underestimated transfer fees during COVID-19, especially
for high- and medium-priced players, questioning the exist-
ence of a cooling-off effect in the transfer market. Addition-
ally, optimization algorithms have gained prominence for
their efficiency in solving complex high-dimensional opti-
mization problems [29, 30]. Recently, a metaheuristic opti-
mization algorithm named football optimization algorithms
has been developed based on tactical gameplay elements
like short passes, long passes, and positional adjustments
to balance exploration and exploitation within the solution
space [31]. Also, many researchers have utilized optimiza-
tion algorithms for hybrid prediction model development
in football-related fields. For instance, Morciano et al. [32]
predicted the above-team-average performance of football
players using supervised machine learning algorithms. The
algorithms were trained and tested on four biometric param-
eters as inputs and seven performance indicators as labels,
optimized using grid-search and two versions of the whale
optimization algorithm, one standard and another proposed
by the authors incorporating Euclidean distance. The anal-
ysis accounted for player roles (strikers, midfielders, and
defenders) to address the varying skill requirements.

Incorporating explainable machine learning techniques
into sports analytics offers a transformative approach to
understanding the multifaceted factors influencing football
player valuation. Unlike traditional predictive methods,
explainable machine learning techniques emphasize trans-
parency and provide stakeholders with a clearer under-
standing of how model predictions are generated [33, 34].
Techniques such as Shapley Additive Explanations (SHAP)
enable researchers to quantify the contribution of each fea-
ture, such as popularity metrics, performance indicators, and
demographic variables, to a model’s predictions, offering
actionable insights. Recent studies have applied SHAP as an
explainability technique to assess the influence of individual
features on predictions in various fields related to sports,
such as performance analytics in professional basketball,
focusing on the varying influence of key performance indi-
cators on match outcomes [35] or to assess the influence of
individual features on match-specific score predictions in
football [36, 37]. Plakias et al. [38] developed an explainable
machine learning model identifying factors crucial for secur-
ing a top-three position in French Ligue 1, ensuring UEFA
Champions League qualification. Also, Moustakidis et al.
[34] identified key team-level performance indicators influ-
encing football match outcomes using explainable machine
learning techniques. By analyzing team-specific features
such as ball possession and pass behaviors, the pipeline
incorporates data preprocessing, feature selection, model
training, and SHAP-based explainability. Furthermore,
the integration of explainable machine learning allows the
development of improved, interpretable ML tools that bridge
the gap between predictive accuracy and usability.
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It is rare in the existing literature to use real-world and
virtual football simulation game datasets for predicting the
market value of players based on their attributes, perfor-
mance metrics, popularity scores, and transfer market values
for various seasons. Also, feature selections by decision-
making and the development of explainable machine learn-
ing models and ensemble predictions are the technical gaps
in the literature. In this investigation, the aim is to determine
the most relevant features among those extracted for players
with various popularity levels from five top-tier European
leagues on their market value and examine the prediction
capability of different machine learning models. At the
conclusion of this research, the following questions will be
addressed: Which variables are most influential in predict-
ing players’ market values, and are they primarily related
to player information, physical and performance attributes,
or game statistics? Which optimization algorithm performs
best in optimizing players’ market value predictions? What
insights can be drawn from explainable machine learning
models, and what are the practical interpretations of these
predictions? How can clubs utilize estimated market values
during player negotiations?

The organization of the research is as follows:

In the “Dataset Exploration” section, the employed data
source (FIFA19 in Sofifa.com) is introduced as a prominent
football-related data platform, which includes player attrib-
utes, performance metrics, popularity, and transfer market
values. Then, the dataset went under preprocessing, and
the most imperative features were selected. The popularity
index of players is one of the important features selected as
the base of feature engineering. In the “Machine Learning
Algorithms” section, regression boosting methods (Adaptive
Boosting (ADA) and Extreme Gradient Boosting (XGB))
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for structured data were reviewed, and four metaheuristic
optimization algorithms, including Ali Baba and Forty
Thieves, Crystal Structure Algorithm, Henry Gas Solubil-
ity Optimization, and Mayfly Optimization Algorithm, were
introduced for hybrid model development. In the “Statistical
Evaluation Metrics” section, the optimized hyperparameters
of two base models are reported, and the iterative optimiza-
tion procedure is illustrated. Then, the prediction perfor-
mance of developed models was evaluated through statistical
parameters and comparative analysis conducted by various
figures. Also, error values in estimating the market value of
sample players with different levels of international reputa-
tion were presented to examine the accuracy of predictions
in detail. In the “Discussion of Results” section, the novel
SHAP method for explaining the sensitivity of predicted val-
ues is presented to assess the generalization performance
of estimations and give valuable insights for future works.
Finally, concluded results and real-world applications are
presented. Framework of the research is presented in Fig. 1.

Dataset Exploration
Data Collection

The dataset of the study was extracted from [39], for which
https://sofifa.com/?r=190075&set=true was the original
reference. Sofifa.com is a prominent online database for
football-related data, particularly focusing on player statis-
tics within virtual football simulation games. The platform
offers a wealth of information, including player attributes,
performance metrics, popularity, and transfer market value
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across various seasons, as is clear in Fig. 2 for Cristiano
Ronaldo and Kylian Mbappé in FIFA 19.

Enthusiasts, analysts, and researchers have widely uti-
lized this dataset. In research focused on predicting foot-
ball player market values, Kirschstein and Liebscher [40]
employed machine learning techniques, utilizing data from
the FIFA16 video game. Their model estimated player mar-
ket values based on skill variables in FIFA, aligning this
information with actual market values from the German First
Division and Second Division sourced from transfermarkt.
com. Results indicated a significant impact of a club’s repu-
tation on player market values. Behravan and Razavi [10]
utilized the FIFA20 dataset to predict football player market
values, emphasizing the importance of considering different
player positions and overall ratings in their research.

Data Preprocessing and Feature Selection

The FIFA19 dataset used in this study comprised 53 features
for 491 sampled players. Data engineering was necessary to
estimate market values accurately, accounting for different
reputation indexes in well-known European football leagues.
To clean the dataset and exert necessary modifications on the
dataset, preparing for the regression-based prediction task,
the following steps were conducted:

1. During the initial preprocessing phase, seven samples
were excluded due to incomplete feature values.

2. Following this, the dataset was enriched by extracting
corresponding leagues and playing positions for each

Uke (2401)  Disiike (754)  Folk

B Friendly Intemational

8k hk kK

player based on club and player names. This led to the
addition of two new columns, “league name” and “play-
ing position.”

3. To ensure the stability of the target value and prevent
excessive variation, 27 players from less professional
leagues with lower-value players were excluded from
the dataset. A substantial majority of the 457 remaining
players were affiliated with defenders, forwards, mid-
fielders, and players with dual professional positions
(forward and midfielder) in Serie A, Premier League,
League 1, La Liga, and Bundesliga.

4. Certain feature columns lacking analytical significance,
such as player nationality, were omitted, resulting in a
final set of 47 features (Specified in Table 1).

5. Nominal features like footedness (preferred foot), weak
foot, and league name were converted to numerical
labels, enhancing their suitability for machine-learning
regression tasks.

Feature selection demonstrates its effectiveness in dimin-
ishing dimensionality, eliminating irrelevant data, boosting
learning accuracy, and refining the comprehensibility of the
obtained results. Filter, wrapper, and embedded represent
the three primary categories of feature selection methods
employed in learning contexts. The filter method is the
most prevalent, involving the selection of features without
the use of a machine learning algorithm. Essentially, this
method filters out irrelevant features through various selec-
tion principles. Filter methods employ selection criteria to

Kylian Mbappé Lottin

Fig.2 Presented data for Cristiano Ronaldo and Kylian Mbappé on Sofifa.com
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Table 1 Feature selection—based ranking of the features by decision-
making between Pearson’s correlation coefficients and Mutual Infor-
mation scores

Features Pearson’s corre- Mutual TOP-ranked
lation coefficient information  features
score (TOPSIS)
Playing Position 8.05E-02 3.48E-02 -
Age 3.93E-01 3.14E-02 -
League 9.06E-01 1.55E-02 -
Preferred Foot 1.19E-01 4.55E-02 -
International Repu- 4.02E-47 2.36E-01 8
tation
Weak Foot 5.56E-03 7.74E-03 -
Skill Moves 9.45E-10 1.00E-01 -
Height 1.09E-02 0.00E+00 -
Weight 2.67E-01 0.00E+00 -
Crossing 1.79E-10 4.86E-02 -
Finishing 1.01E-10 1.41E-01 14
Heading Accuracy — 2.24E-01 3.52E-02 -
Short Passing 2.36E-29 3.69E-01 4
Volleys 4.53E-13 1.27E-01 16
Dribbling 1.45E-20 2.92E-01 6
Curve 4.30E-15 2.23E-01 9
Free Kick Accuracy 3.60E-15 1.59E-01 12
Long Passing 2.74E-13 1.95E-01 10
Ball Control 3.93E-39 4.85E-01 2
Acceleration 5.28E-07 8.24E-02 20
Sprint Speed 4.42E-05 1.21E-02 -
Agility 3.39E-10 3.86E-02 -
Reactions 9.62E-49 4.96E-01 1
Balance 1.66E-07 8.81E-02 -
Shot Power 1.14E-11 1.59E-01 13
Jumping 8.10E-01 2.82E-02 -
Stamina 1.32E-09 1.11E-01 18
Strength 6.56E-01 0.00E+00 -
Long Shots 1.18E-13 1.90E-01 11
Aggression 6.52E-01 4.25E-02 -
Interception 8.57E-01 2.84E-02 -
Positioning 1.24E-11 2.38E-01
Vision 1.02E-20 3.98E-01 3
Penalties 1.83E-10 1.08E-01 19
Composure 8.94E-38 3.60E-01 5
Marking 4.56E-01 9.47E-02 -
Standing Tackle 6.15E-01 7.74E-02 -
Sliding Tackle 4.35E-01 6.43E-02 -
Games Played 1.46E-01 1.91E-02 -
Games Started 1.47E-02 2.74E-02 -
Minutes Played 6.05E-02 4.93E-02 -
Goals 1.33E-12 3.75E-02 -
Assist 2.22E-13 3.69E-02 -
Shots on Goal 5.17E-14 1.22E-01 -
Shots 3.61E-11 1.39E-01 17
Yellow Card 1.44E-01 0.00E +00 15

Table 1 (continued)

Features Pearson’s corre- Mutual TOP-ranked
lation coefficient information  features
score (TOPSIS)
Red Card 5.34E-01 7.07E-03 -

assign scores to features in the training dataset, followed
by a ranker search method that ranks each feature based on
computed scores (Tang et al., 2014). Features with higher
informativeness receive elevated scores, while less informa-
tive ones receive lower scores. The resultant complete set
of features, ranked according to computed scores, is then
presented to the end user for subset selection. Diverse filter-
based feature selection methods, such as Variance Infla-
tion Factor (VIF)-based, Pearson’s correlation—based, and
mutual-information-based feature selection, exist based on
the selection principles applied.

VIF-Based Feature Selection

A popular measure for identifying multicollinearity between
independent variables in a dataset is VIF. Interpreting the
link between the characteristics and the target variable can
be challenging due to multicollinearity, which can lead
to instability in the calculated regression coefficients. By
calculating the extent to which the correlation with other
characteristics inflates the variance of a feature’s coefficient,
VIF measures the degree of multicollinearity [41, 42]. This
equation is used to calculate it:
VIF = 1
1R M
L

where the coefficient of determination for the dataset’s ith
feature is denoted by R?. In this study, the threshold of 10
has been utilized for selecting the features as illustrated in
Fig. 3. Among all 47 features, 8 variables had VIF > 10 and
removed from dataset. So 39 features were in the selected
features set showing less mutlicolinearity. Therefore, other
feature selection methods utilized to select more decreased
number of features for prediction.

Correlation-Based Feature Selection

The underlying concept of correlation-based feature
selection is not dependent on specific data transforma-
tions; it necessitates a means of quantifying the corre-
lation between any pair of variables. Consequently, this
technique is versatile and applicable to various supervised
problems, including those involving the prediction of vari-
ables. It is an entirely automated algorithm, eliminating
the need for users to specify thresholds or the number of
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Fig.3 Variance Inflation Factor
results in feature selection
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features to be selected, although such parameters can be
easily incorporated if desired. Importantly, this method
functions as a filter, avoiding the computational costs asso-
ciated with repetitively employing a learning algorithm
[43].

According to this approach, a feature V; is said to be rel-
evant if there exists some v; and ¢ for which p(V; =v;) > 0:

p(C=c|V,=v) #p(C=0c) (@)

Empirical findings in the field of feature selection empha-
size the necessity of removing not only irrelevant features
but also redundant information. A feature is deemed redun-
dant when it exhibits a high correlation with one or more
other features. Therefore, an effective feature subset is char-
acterized by features that are highly correlated with the tar-
get value yet display low correlations with each other.

If the correlation between each component in a test and an
external variable is known, along with the inter-correlation
between each pair of components, the correlation between a
composite test (formed by summing the components) and the
external variable can be anticipated from these parameters.

kr

Te = m 3)

where r,; represents the correlation between the summed
components and the outside variable, k is the number of
components, r,; is the average of the correlations between
the components and the outside variable, and 7; is the aver-
age inter-correlation between components.

Equation (2) represents Pearson’s correlation coefficient,
standardized for all variables. It indicates that the correlation
between a composite and an external variable depends on
the number of component variables, their inter-correlations,
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and the correlations between components and the external
variable.

Higher correlations between components and the exter-
nal variable elevate the overall composite-external variable
correlation. Lower inter-correlations among components are
linked to a stronger composite-external variable correlation.
Additionally, increasing the number of components in the
composite while maintaining consistent intercorrelations
with other components and the external variable leads to a
heightened correlation between the composite and the exter-
nal variable.

Mutual Information-Based Feature Selection

In information theory, mutual information /(X;Y) is the
amount of uncertainty in X due to the knowledge of Y [44,
45]. Mathematically, mutual information is defined as

px,y)
I(X:Y) = Wlog—22

where p(x,y) is the joint probability distribution function
of X and Y, and p(x) and p(y) are the marginal probability
distribution functions for X and Y. We can also say

HX:Y) = H(X) — H(X|Y) 5)

In this framework, where H(X) represents marginal
entropy, H(X|Y) is conditional entropy and H(X;Y) is joint
entropy, mutual information serves as a measure of informa-
tion gain between features and class attributes. Employing
a greedy strategy, the method selects features that provide
maximum information about the class attribute with minimal
redundancy from the remaining set.
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Then, TOPSIS (Order Priority Technique by Similari-
ties to Ideal Solution) [46], as a simple ranking method,
attempted to choose alternatives that simultaneously have
the lowest Pearson’s correlation coefficient and highest
Mutual Information score. The optimal number of features
(20 top features) was selected based on reports in Table 1.

Feature Engineering

In football, a handful of players labeled as superstars sig-
nificantly impact a club beyond their on-field performance,
influencing their transfer market values [47]. Clubs invest
in popular players for global commercial appeal, enhanc-
ing profitability through various channels. Record-breaking
transfers, like Cristiano Ronaldo’s €94 million move in 2009,
and ongoing record-breaking transfers, including those of
Ousmane Dembélé (€140 million), Kylian Mbappé (€145
million plus €35 million commission), and Neymar Jr (€222
million), prompt examination into the factors influencing a
player’s market value.

To be able to answer the question: “How is the distribu-
tion of players with a reputation index of 1 (least popular)
to 5 (most popular) in five top-tier European leagues, and
what effect has it had on the average market value of play-
ers in these leagues?” useful reports are provided in Fig. 4
and Table 2.

Premier League had the largest number of players
with a reputation index of 3 and 4, and the average mar-
ket value of its players with a reputation index of 4 was

)
=3
S

B scric A
Premier League
League one

B La Liga

Il Bundesliga
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S 3 38 &
T T T
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o ©O © © ©

l
. —
1 2 3

Reputation Index

—
4
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Fig.4 Frequency of five top-tier European League football players in
each category of reputation index

higher than other leagues. Moreover, in other groups,
players with marginal differences with La Liga were the
second most expensive players. League 1 also had one
expensive superstar, but dominant players in this league
were less popular ones with the lowest market value. La
Liga paid the highest range of salaries to less popular play-
ers. All these contributions led to conclude that managers
of clubs in League 1 and Serie A were more concentrated
on attracting superstars to earn more from ticket sales and
reach a high level of performance based on their expe-
rience. Nevertheless, managers of Premier League clubs
are more concentrated on players with low reputations but
batter international reputations in the future and pay high
amounts of money for those players. However, in La Liga
and Bundesliga, managers preferred to invest in less popu-
lar players with low market values and concentrated on
the experience of coaches in training them well to create
new superstars.

Machine Learning Algorithms
Extreme Gradient Boosting (XGB)

XGB, a highly effective gradient boosting machine (GBM)
method, is well-known for its versatility in tackling super-
vised learning problems, including regression and clas-
sification. It is popular among data scientists because of
its fast execution speed, which is due to its out-of-core
processing capabilities [48]. XGBoost uses a set of equa-
tions to create predicted outputs y, for ensemble tree
models on a dataset DS with n instances and m features
DS={(X,y;) 1i=1...n,x; €ER",y, €ER}

K
A =2(X;) = ka(xi)’fk EF (6)
k=1

The variable K defines the number of trees, whereas f;
indicates the K, tree.

To solve the given equation, the key is to minimize both
the loss and regularization objectives by identifying the
optimal set of functions.

Table2 Average market values

. League Reputation index

(€) of football players in each

category of the reputation index 1 2 3 4 5
Serie A 7,602,206 12,490,854 31,640,000 57,000,000 77,000,000
Premier League 9,293,103 17,420,000 37,156,250 65,000,000 -
League 1 6,586,170 10,744,444 34,312,500 44,750,000 118,500,000
LaLiga 11,479,069 18,704,545 38,300,000 52,000,000 95,250,000
Bundesliga 8,951,250 15,125,000 19,012,500 40,875,000 -
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0@) = Y 1(vAy) + X, Q) %

k

The loss function, written as 1, is defined by the difference
between the expected output y; and the real output y,

O serves as a metric assessing the model’s complexity to
mitigate overfitting, and its calculation is governed by Eq. (7):

Q(f) =7+ Al ®)

The weight assigned to each leaf is signified by W, and the
whole number of leaves is symbolized by T.

During model training, decision trees are boosted to reduce
the objective value iteratively. As the model begins to learn,
it incorporates a new function (tree) symbolized by Egs. (9)
to (12):

0" =Y 10,AV +£(X)) + Q) )
i=1

1 (ZieILgi>2 (Eielxgi>2 (Zielgi)2

Qi = 5 + - (10)
w2 ZieILhi + 4 ZieIRhi +A Xighi+ 4
g = 0y 1(y;, AO7D) (11)
b = 0%y 1(y;, AU7D) (12)
Residual
Errors

Feature 1
Threshold
value

Leaf' 1 Leaf 2

Fig.5 Schematic representation of the XGB tree
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Figure 5 depicts the schematic representation of XGB.
Adaptive Boosting (ADA)

Schapire [49] first proposed boosting techniques in 1990
to overcome the apparent weakness of decision trees when
employed alone. Despite its limited capabilities, deci-
sion trees can be successively merged to produce a strong
learner. The boosting technique iteratively adds new tree
models to the ensemble, with each addition resulting in the
replacement of the weakest tree. This guarantees that only
the strongest tree contributes to the ensemble, gradually
increasing the overall model efficiency, as shown in Eq. (12).
However, issues developed after creating the initial basic
tree model, with some samples in the dataset properly cat-
egorized and others misclassified. The approach improves
the model’s performance over time by doing repetitive com-
putations and gradually building up tree models.

G,(x) = G,_,(x) + argmin;, Y L(y;, G,_;(0) + T(x;)) (13)
i=1

The notation T (x; ) refers to the newly added tree, G,,_; (x)
to the overall model produced in the previous round, and
G ,(x) to the overall model obtained after adding the new
tree. The prediction result of the ith tree is indicated by y;.

The AdaBoost technique overcomes restrictions by gradu-
ally enhancing the model’s classification skills through con-
tinual training. It starts by generating an initial weak classi-
fier from training samples and then combining misclassified

Residual
Errors

Feature 1
Threshold
value

Leaf'1 Leaf 2
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examples with untrained data. The learning process is then
used to generate further weak classifiers, and this iterative
process is done several times. Each cycle consists of merging
misclassified samples with untrained data to generate a new
training sample [50]. This incremental technique improves
the model’s overall performance as a weak classification
method. The AdaBoost method generates a robust classi-
fier by combining numerous weak classifiers. It improves
proper categorization by allocating different weights to
samples. Correctly categorized samples are given lower
weights, while incorrectly classified samples are given

Algorithm 1: Pseudocode outlining the AdaBoost algorithm.

higher weights. This method pushes the model to prioritize
misclassified data, increasing its capacity to accurately iden-
tify them in subsequent rounds [51].

Figure 6 depicts the computation process for the Ada-
Boost technique, in which each basic tree model is trained
by modifying the weight distribution of each dataset sample.
This results in varying training outcomes for each training
dataset, and the final results are calculated by adding all the
individual results [52].

The provided pseudocode outlines the AdaBoost algo-
rithm [54].

Learn

A constant L

Forj=1toL do

Forall i

w(i)
STtw(@)

Calculate normalized weights P; (i) =
b= B
Compute the error of h;

1
Ifg; > 3 then

L=j-1 B = 11,-
For all i:
Estimate new weights Wi (D) = w;(D)B jl
End For
Output: e

Input: a set S, of m labeled samples: S = ((x;, ), = (1,2, ..., m)), with labels in Y

Initialize for all i: w;(i) = 1/m // initialize the wights

// call weak Learn with normalized weights

g = Xip; () [hi(x; # y)]

—[hjCxi=yi]

1
hfinal(x): Zyey j=1 (logﬁ) [h](x = y)]

Ali Baba and Forty Thieves Algorithm (AFT)

Malik et al. invented the AFT algorithm, which was inspired
by Ali Baba and the Forty Thieves [55]. The algorithm
reflects the repetitive aspect of the story, as a band of rob-
bers pursues Ali Baba. Countermeasures in the novel, car-
ried out by the main character, Marjane, are consistent with
adaptive techniques in the algorithm. The village where
Ali Baba dwells represents the algorithm’s search space.
Clever techniques from the narrative inspire the algorithm’s

exploration efficiency, serving as the foundation for math-
ematical models in the AFT algorithm’s construction and
development.

The fundamental goal of this project is to employ an
optimization approach that uses Ali Baba and the Forty
Thieves story as a unified model for human social interac-
tion. The study connects aspects of the narrative, such as the
thieves’ coordinated attempts to find Ali Baba’s residence,
their range of travel, and Marjane’s ingenious strategies to
deceive them, to an objective function for optimization. This
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approach leads to the creation of a novel metaheuristic tech-
nique, which is discussed in the following sections [56].
The AFT algorithm initializes by randomly positioning
individuals (thieves) in a multidimensional search space,
with each location representing a potential solution within
defined boundaries. Fitness values, derived from a user-
defined objective function, guide the search process, where
thieves update their positions if a better solution is found.

Algorithm 2: A pseudocode description of the AFT.

The search mimics the pursuit of Ali Baba, employing strate-
gies like refining positions using shared knowledge, random
exploration when misled, and balancing exploration and
exploitation through global and individual best solutions.
These adaptive strategies enhance the algorithm’s optimiza-
tion capability in complex problem spaces.

The AFT algorithm’s pseudocode can be concisely out-
lined through the iterative steps provided in Algorithm 2.

and n indicates the number of thieves.

Assess the fitness function.
Sett « 1

While (t < T) do
25?2
Td, =1xe” @

Pp, = 0.1 x log (2 (5)0'1)
Fori=1,2,..,ndo
If (rand = 0.5) then
If (rand = P,;) then

Else
xtyy = Td[(w; — [)rand + [;]
Else If

Else

End If
End For
Fori=1,2,..,ndo

Inspect, assess, and revise the new positions.

End For
t=t+1
End While

u; and [; represent the upper and lower bounds of the j;;, measurement, respectively. x denotes the position,

Prepare the location for the best best} and the global best gbest location.

Xi11 = gbest, + [Td.(besti — y))r, + Td,(yi — m*®)r,]sgn(rand — 0.5)

m?(i))rz]sgn(rand -0.5)

xt,, = gbest, — [Td.(bestt — y))r, + Td, (v} —

Assess and revise the solutions for m?(i), best!, ghest,
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Fig.6 Process of AdaBoost
calculation [53]

Training set

Prediction 1

Crystal Structure Algorithm (CSA)

Crystals are solid minerals with atoms and particles struc-
tured in a periodic crystalline shape. The name is derived
from the Greek word for Cold-Frozen. Discovered by
Kepler, Hooke, and Hogens in the seventeenth century
[57], crystals exhibit a cyclical arrangement of atoms
that forms a lattice, influencing the overall structure.
The crystal lattice, characterized by infinite geometric
forms, gives rise to diverse shapes [58]. The structure is
discontinuous, defined by an endless lattice form, with
each lattice point connected to its position. Crystals vary
in size and form, and their properties might be anisotropic
or isotropic [59].

The CSA optimizes solutions by simulating crystallo-
graphic processes, where crystal positions are initialized
randomly within defined bounds. Iterative updates refine
these positions using four improvement strategies (basic,
optimal, average, and combined cubic), guided by the best
crystal configurations and their mean merit. The algorithm
balances exploration and exploitation through dynamic
adjustments, ensuring effective convergence. A boundary
flag maintains constraints on variable solutions, and opti-
mization ends after a set number of iterations, signaling
the completion of the search process. Figure 7 illustrates
the technique using a flow chart.

Training set

Synthesis

Training set

Prediction 2 Prediction n

~ Final
" Results

Henry Gas Solubility Optimization (HGSO)

The Henry Gas Solubility Optimization algorithm, inspired
by Henry’s gas law, is a novel physics-based optimization
method introduced by Hashim et al. It utilizes the principles
of gas solubility in liquids, with a focus on low-solubility
gases [60]. The main contributing elements are temperature
and pressure, with higher temperatures typically increasing
solid solubility and decreasing gas solubility. The program
uses these insights to optimize operations across a variety
of applications [61].

The HGSO algorithm improves gas solubility in liquids
by simulating the effects of increased pressure through an
eight-step optimization process. It begins by initializing
gas populations, positions, Henry’s constants, and partial
pressures. Gases are grouped by type, and the optimal gas
in each group is identified based on equilibrium positions.
The algorithm iteratively updates Henry’s constant using
temperature-dependent calculations, which influence solu-
bility values for each gas. Positions of gases are dynami-
cally updated, leveraging solubility and fitness evaluations
to guide the search for optimal solutions. To avoid local
optima, gas positions are adjusted based on interactions and
fitness, ensuring exploration and exploitation. Finally, the
weakest agents are ranked and repositioned, enhancing the
algorithm’s convergence and overall performance.

The steps of the HGSO algorithm are detailed in
Algorithm 3.
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Algorithm 3: Pseudocode definition of the HGSO.

the same value for Henry's constant (Hj).

Assess each cluster j
While t <maximum number of iterations do

For each quest agent do

Update the locations of all search agents using:

and
y=BX%exp(—

End For

Update the solubility of each gas using:

Update the situation of the worst agents using:

End While
t=t+1

Return X, ¢

Starting: X;(1 = 1,2, ..., N), number of gas types i, H;, P, j, C;, l1, l; and 5.

Separate the population of agents into groups based on the gas types, each group having

Become the best gas X;, best in each cluster, and the finest search agent X,

Xij(t+1) =X j(®) + F X1 XY X (Xjpese (1) — X j(£)) + F X1 X a X (8 ;(t) X Xj pest (£) — X;j(£))

Fbest(t) +e
Fii(t) +e

Update Henry's coefficient of each gas type using:

. _ 0 .
H(t + 1) = Hy(t) x eCi/TO=A/T) 7(p) = g(-t/iten)

Rank and choose the number of worst agents using:

NW =N * (Tand ((Cz - Cl) + Cl)r Cl; Cl = 01, CZ =0.2

Gij = Guingi,jy + 7 X (Guaxi,j) = Gmin(i, )
Update the best gas X;, best, and the best search agent Xp.;

), e =0.05

Mayfly Optimization Algorithm (MOA)

Mayflies, categorized under Palaeoptera in the order
Ephemeroptera, are insects that remarkably emerge in
May in the UK. Immature mayflies undergo several years
of growth as aquatic nymphs before transitioning to adult
mayflies. Male adults typically gather in swarms a few
meters above the water surface to attract females. Mating
is a brief process lasting only a few seconds, after which
eggs are deposited into the water, continuing the cycle. Allan

@ Springer

and Flecker [62] and Barbara, Peckarsky et al. [63] provide
detailed information on this behavior. Zervoudakis and
Tsafarakis [64] introduced MOA as an innovative method
for addressing problems. This hybrid method merges the
strengths of traditional optimization methods like PSO [65],
GA [66], and FA. The elements of MOA are outlined as
follows:

The motion of male mayflies in the algorithm is deter-
mined by their position and velocity, which are updated
based on their previous states and the influence of cognitive
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Fig.7 Flow chart of the Crystal
Structure Algorithm (CSA)

Initializing
Cri=random xil
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Creat new crystal (F.)

|
Yes

%

and social factors. Male mayflies maintain high speeds and
adjust their movements according to the best solutions they
have visited (personal best) and the global best, with attrac-
tion and visibility coefficients influencing these updates. The
nuptial dance introduces a stochastic element to enhance
exploration, where coefficients gradually decrease with
iterations. Female mayflies are attracted to high-perform-
ing males, with their movements influenced by the fitness
of their solutions and the Cartesian distance to the males.

If a female’s solution is not attracted to a male, a random
walk component is applied. The algorithm incorporates
interbreeding, where the top-performing male and female
mayflies are paired to produce offspring with traits inher-
ited from both parents. These offspring undergo mutation,
introducing variability and enhancing the exploration of the
solution space.

Algorithm 4 signifies pseudocode Mayfly Optimization
Algorithm (MA) [67].
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Algorithm 4: Pseudocode delineation of the MOA.

Objective function f(x),x = (xq, ..., x4)T

Estimate solution
Discovery global best

While stopping criteria are not met

Estimate solutions
Rank the mayflies
Mate the mayflies
Estimate offspring

Update pbest and gbest
End While

Postprocess results and visualization

Adjust the male mayfly populace x;(i = 1,2, ..., N) and velocities v,,;

Adjust the female mayfly populace y; (i = 1,2, ..., M) and velocities vy;

Update velocities and solutions of males and females

Separate offspring to male and female randomly

Change the best solutions with the best new ones

Statistical Evaluation Metrics

The performance evaluation of the analyzed models is con-
ducted employing five specified metrics designated as R?,
RMSE, MAE, MNB, VAF, and MAPE.

R? (Coefficient of Determination):

R? is a statistical measure denoting the quality of the
model fit by quantifying how much variability in the depend-
ent variable is accounted for by the independent variable.
The scale ranges from 0 to 1, where a higher R? signifies a
better model fit and an R? of 1 indicates a complete explana-
tion of the dependent variable’s variability.

RMSE (Root Mean Square Error):

RMSE serves as a metric to measure the average magni-
tude of disparities between predicted and observed values
in a model. A lower RMSE reflects heightened predictive
accuracy, signifying minimized discrepancies between the
model’s predictions and the actual observed values.

MAE (Mean Absolute Error):

MAE assesses model performance by measuring the
average absolute differences between predicted and actual
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values, offering a direct gauge of accuracy by conveying the
average magnitude of prediction errors.

MNB (Mean Normalized Bias):

MNB is a statistical metric applied in model evaluation,
specifically in regression analysis. It gauges the average
deviation between predicted and actual values, considering
normalization to provide a comprehensive assessment of
predictive performance.

VAF (Variance Accounted For):

Variance Accounted For (VAF) is a metric used in regres-
sion analysis or predictive modeling to measure the propor-
tion of variance in a dependent variable explained by an
independent variable or a statistical model.

MAPE (Mean Absolute Percentage Error):

Mean Absolute Percentage Error (MAPE) is a widely
used metric for forecast accuracy due to its scale-independ-
ence and ease of interpretation.

Equations (14) to (19) serve as the mathematical repre-
sentations of the metrics mentioned above.
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Symbols A; and P; denote the actual observed values and
corresponding predicted values, respectively. Aand P rep-
resent the mean outcomes in testing and predicting, with n
indicating the total sample count in the analyzed dataset.
The symbol R serves as a scaling factor specific to each data
point, commonly employed for normalizing bias.

Discussion of Results

Cross-Validation

providing a more reliable estimate of the model’s gener-
alizability by ensuring that the model is tested on different
subsets of the data.

Hyperparameter Optimization and Convergence
Analysis

The learning process of an algorithm is influenced by hyper-
parameters, which represent specific values or weights. XGB
and ADA, as highlighted earlier, provide an extensive range
of hyperparameters that can be fine-tuned to maximize
accuracy. Automated tuning of these learnable parameters
enables XGB and ADA to effectively identify patterns and
regularities within datasets. In tree-based models like XGB
and ADA, these parameters include decision variables at
each node. Given the complexity of XGB and ADA, with its
numerous design choices, the primary challenge lies in opti-
mizing the selection of multiple hyperparameters. This can
be addressed through efficient hyperparameter tuning meth-
ods. In this study, the hyperparameters for XGB and ADA
were selected based on previous research on detecting effi-
cient hyperparameters [69, 70]. These hyperparameters are
n_estimators, max_depth, learning_rate, colsample_bytree,
and subsample. The results of adjusting hyperparameters
for XGB and ADA models are elaborated in Tables 4 and
5, respectively.

Convergence graphs are invaluable instruments for visu-
alizing the dynamics of iterative processes across diverse
domains. Through a deep examination of trends, rates, and
minimum values, profound insights can be gleaned into the
efficacy and constraints inherent in the applied processes or
algorithms [71-74].

Table 4 The results of hyperparameter optimization for XGB

To assess the model’s performance, the dataset is divided Hyperparameter  Models
into subsets based on the K-fold cross-validation. The mod- XGAF XGCS XGMO  XGHG
els are trained on all but one of these subsets (the “train- ]
. . .. « n_estimators 102 104 134 576
ing fold”) and evaluated on the remaining subset (the “test
» . . . . max_depth 76 4 56 248
fold”). This procedure is repeated, with each subset being )
learning_rate 0.0779797  0.435474  0.130039  0.336626
used as the test fold exactly once [68]. The final performance
. . colsample_bytree ~ 0.334355 0.358836  0.763059 0.13099
metrics are reported in Table 3. One of the key advantages
. . . . ... e subsample 0.769512 0.420914 0.302734 0.586162
of cross-validation is that it helps mitigate overfitting,
Table 3 Cross-validation results Model Metric Metric results through folds (test)
K1 K2 K3 K4 K5
XGB R? 0.806 0.805 0.968 0.882 0.808
RMSE 8,650,976 6,280,439 1,821,063 3,332,494 7,628,000
ADA R 0.916 0.794 0.927 0.946 0.875
RMSE 6,084,973 4,013,015 6,914,160 2,540,025 8,272,643
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Table 5 The results of hyperparameter optimization for ADA

Hyperparameter =~ Models

ADAF ADCS ADMO ADHG
n_estimators 54 60 86 36
learning_rate 0.15145  0.397159  0.252832  0.904226

Figure 8 illustrates the convergence process of hybrid
models associated with XGB and ADA. The graph demon-
strates a consistent decrease in RMSE with extended training
periods, indicating improved model fit and successful learn-
ing of underlying data patterns. The RMSE reduction rate is
especially swift in the initial periods, followed by a gradual
stabilization in the later stages.

The XGAF, XGCS, XGMO, and XGHG models dem-
onstrated lower RMSE value (approximately €5 million) in
the initial iteration compared to the ADAF, ADCS, ADMO,
and ADHG models. The XGAF model displayed superior
performance with the lowest RMSE value of €1.91 million
at the 170th iteration. Additionally, the ADAF model had
effectively converged, displaying a lower RMSE than other
ADA-based hybrid models, specifically at €2.69 million in
160 iterations.

Prediction Performance of Developed Models

Tables 6 and 7 demonstrate the results obtained from
both the XGB- and ADA-based models, along with

Fig.8 The convergence of
optimization procedures related
to hybrid models
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the corresponding hybrid models for comprehensive
examination.

In Table 6, a thorough investigation reveals that the XGB
single model displaying R? values of 0.9586 and an RMSE
of €4.55 million demonstrated comparatively lower predic-
tive efficiency. Conversely, the XGAF model outperformed
others, revealing superior performance with R> and RMSE
values of 0.9905 and €1.91 million, respectively. This error
value is under 10% of average market values reported in
Table 2 for players with various levels of popularity. Nota-
bly, the XGAF model attained a VAF of 98.8, signifying
a higher percentage of explained variance and superior
explanatory power compared to alternative models. Fol-
lowing, the XGAMCH ensemble model secured the second
position with R? = 0.9889 and RMSE = 2.03 million euros.

The results presented in Table 7 underscore the superior
performance of the ADAF model, attaining values of 0.9847
and €2.69 million for the R? and RMSE metrics, respec-
tively. Remarkably, the ADAF model exhibited the highest
VAF value, equal to 977, and an MNB value of —0.269,
indicative of a smaller average bias between predicted and
actual values. The ADAMCH ensemble model secured the
second position with values of R>=0.9742 and RMSE =3.23
million euros.

Also, Fig. 9 illustrates that based on all metric values
results (except for MNB), XGAF was the best performer,
and its superiority was more visible in the case of RMSE
(€2.6 million lower than XGB as the worst model) and MAE
error values.

3. 18E+06
2.69E+06

20 40 60 80 100 120 140 160 180 200
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Table 6 Metric reports related

{0 XGB-based prediction Model Part Indicator values
models’ performance in players’ RMSE R? MAE MNB VAF MAPE
market value prediction
XGB Train 4.62E4+06 09615 231E+06 —7.58E-02 9.12E+01 1.34E+01
Validation  5.36E+06 0.9448 2.86E+06 —6.11E-02 8.76E+01 1.53E+01
Test 3.11IE+06 09676 1.82E+06 —4.93E-02 9.52E+01 1.13E+401
Total 455E4+06 09586 232E+06 —6.96E-02 9.12E+01 1.34E+01
XGAF Train 1.79E+06 0.9920 6.79E+05 —4.41E-02 9.90E+01 5.42E+00
Validation 231E+06 0.9881 1.34E+06 —5.13E-02 9.82E+01 8.88E+00
Test 2.01E+06 0.9850 1.31E+06 —3.98E-02 9.82E+01 7.47E+00
Total 191E+06 09905 8.74E+05 —4.45E-02 9.88E+4+01 6.24E400
XGCS Train 237E+06 09838 1.85E+06 —2.60E-02 9.84E+01 4.12E+01
Validation  2.33E+06 0.9858 1.51E+06 7.02E-03 9.83E+01 1.42E+01
Test 2.76E+06 09697 1.76E+06 —2.73E-02 9.69E+01 9.51E+00
Total 243E+06 09821 1.78E+06 —2.12E-02 9.82E+01 3.24E+01
XGMO Train 2774E+06 09784 136E+06 —296E-02 9.77E4+01 1.58E+01
Validation  3.14E4+06 09721 2.09E+4+06 —3.11E-02 9.70E+01 1.59E+01
Test 3.12E+06 09611 2.14E+06 —3.50E-02 9.60E+01 1.34E+01
Total 2.86E+06 09753 1.59E+06 —3.06E-02 9.74E+4+01 1.54E+01
XGHG Train 336E+06 09710 940E+05 —2.02E-02 9.62E4+01 4.74E+00
Validation 4.24E+06 0.9592 222E+06 —3.74E-02 9.33E+01 1.17E+01
Test 246E+06 09757 1.78E4+06 —3.45E-02 9.75E+4+01 1.16E+01
Total 339E+06 0.9687 1.26E+06 —2.50E-02 9.59E+01 6.81E+00
XGAMCH  Train 1.84E4+06 09914 9.65E+05 —3.00E-02 9.89E+4+01 7.83E+400
Validation  2.53E+06 0.9857 1.53E+06 —2.82E-02 9.79E4+01 9.18E+400
Test 225E+06 09798 147E+06 —3.42E-02 9.79E+01 8.51E+400
Total 2.03E+06 09889 1.13E+06 —3.04E-02 9.86E+01 8.13E+4+00

Figure 10 illustrates scatter plots for XGB and ADA
single models, the best-performing XGAF and ADAF
hybrid models, and the XGAMCH and ADAMCH ensem-
ble models. The scatter plot is the prevalent form of data
visualization, which employs the method of data represen-
tation for depicting bivariate data (x;,y;), aiming to show
associations between the x and y values in each respective
pair i [75]. Detailed dispersion points, primarily controlled
by RMSE and R?, ensure that higher density corresponds
to lower RMSE values. A superior fit of the line to the
data is indicated by a higher R? value. Within the plots,
three lines are featured: the best-fit line (X = Y) and two
dashed lines representing a 15% underestimation and
overestimation.

The XGB and ADA models feature RMSE values at
45.5% and 43.1% and the lowest R? values of 0.9586 and
0.9532 displayed notable dispersion compared to the Best
Fit line, suggesting reduced accuracy in predicting the mar-
ket value of football players. Contrastingly, the XGAF and
ADAF hybrid models displayed outstanding performance,
displaying significant reductions in RMSE values compared

to the XGB and ADA models. Particularly, the XGAMCH
and ADAMCH ensemble models secured a commendable
second position in the overall performance ranking. The R?
values for the XGAF and ADAF models stand at 0.9905 and
0.9847, respectively.

Figure 11 shows the Taylor diagram for the developed
models. The Taylor diagram compares estimated values by
models with actual values. It visually represents the stand-
ard deviation ratio, correlation coefficient, and centered root
mean squared error of each model compared to the reference
dataset. This allows for easy identification of models that
perform better in prediction [76].

The XGAF and XGAMCH models exhibited superior
performance, as evidenced by the highest correlation coef-
ficients and smallest standard deviation, indicating closer
alignment with the actual market values. Following closely
in performance assessment is the ADAF model with higher
RMSE and lowest R? value. Conversely, the single ADA
and XGB models displayed the lowest efficiency and perfor-
mance, rendering the models unsuitable for reliable predic-
tions of players’ market values.
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Table 7 Metric reports related Model Part Indicator values
to ADA-based prediction
models’ performance in players’ RMSE R? MAE MNB VAF MAPE
market value prediction
ADA Train 437E4+06 09553 3.54E+06 —4.06E-01 9.33E+01 2.46E +01
Validation 4.55E+06 0.9503 3.11E+06 —2.23E-01 9.24E+01 2.01E+01
Test 380E+06 09462 254E+06 —1.57E-01 9.31E+01 1.45E+01
Total 431E+06 09532 332E+4+06 —341E-01 931E+01 2.24E+01
ADAF Train 2.60E4+06 09877 220E+06 —3.09E-01 9.80E+01 1.88E+01
Validation 3.09E+06 09790 222E+06 —2.03E-01 9.69E+01 1.67E+01
Test 271E+06 09741 195E+06 —1.49E-01 9.69E+01 1.25E+01
Total 269E+06 0.9847 217E+06 —2.69E-01 9.77E+01 1.75E+01
ADCS Train 3.14E+06 09772 252E+06 —295E-01 9.67E+01 1.95E+01
Validation  3.63E+06 09638 231E+06 —1.64E-01 9.59E+01 1.59E +01
Test 286E+06 09695 198E+06 —1.18E-01 9.63E+01 1.23E+01
Total 3.18E+06 09739 241E+06 —249E-01 9.65E+01 1.79E+01
ADMO Train 349E+06 09704 276E+06 —3.03E-01 9.59E+01 2.07E+01
Validation  3.73E4+06 09647 246E+06 —1.66E-01 9.52E+01 1.69E+01
Test 3.09E+06 09631 215E+06 —1.18E-01 9.57E+01 1.29E+01
Total 347E+06 0.9685 2.62E+06 —2.54E-01 9.57E+01 1.89E+01
ADHG Train 3.84E+06 0.9655 3.17E+06 —3.65E-01 9.50E+01 2.30E+01
Validation 4.22E+06 09519 289E+06 —233E-01 9.43E+01 1.99E +01
Test 3.54E+06 0.9529 243E+06 —151E-01 9.41E+01 1.45E+01
Total 386E+06 0.9616 3.02E+06 —3.13E-01 9.48E+01 2.13E+01
ADAMCH  Train 320E+06 09773 262E+06 —3.18E-01 9.66E+01 2.03E+01
Validation  3.60E+06 09666 238E+06 —191E-01 9.58E+01 1.71E+01
Test 299E+06 0.9667 2.10E+06 —1.34E-01 9.60E+01 1.28E+01
Total 323E+06 09742 250E+06 —2.71E-01 9.64E+0ls 1.87E+01

Prediction of Market Value for Players with Different
Reputation Index

To examine the generalization capability of XGAF and
XGAMCH models in estimating the market value of players
within various datasets, their effectiveness in the prediction
of player’s value in each group of reputation index (least
popular with an index of 1 to most popular with an index of
5) is presented in Fig. 12. In the case of players with a repu-
tation index of 5, due to the low number of samples, there
is not a comprehensive representation of error values, but in
the case of superstars with a reputation index of 4, XGAF
was the most accurate predictor with most errors lower than
10%. The estimation performance of XGAF in the remain-
ing two groups of samples became less accurate, with five
to more than ten times higher error values. In contrast to
XGAF, XGAMCH demonstrated maximum error in the case
of the market value of samples with a reputation index of 4.
However, still, its prediction error in the case of most of the
players with higher popularity was lower than those with
least popularity, indicating that introduced estimation mod-
els are reliable market value predictors, especially useful

@ Springer

for clubs planning to concentrate on popular and expensive
players with a high risk of decision making in the transfer
market.

To discuss more on the obtained results, firstly, the Wil-
coxon signed-rank test was conducted to compare models’
prediction accuracy in pairs. Then, the prediction perfor-
mance of the developed best prediction models and their
performance metrics are compared with those of models in
the literature.

Statistical Testing

This study provides an in-depth analysis of model perfor-
mance by conducting a pairwise comparison of prediction
models using the Wilcoxon signed-rank test, as proposed
by Demsar (2006) [77]. A total of 66 pairwise comparisons
were made, with Bonferroni-adjusted p-values below 0.05,
indicating significant performance differences between the
models [78, 79]. The results, as reported in Table 8, show
that the combination of ADCS_ADMUO exhibits the most
notable performance difference, achieving the highest
value of 0.8246. Additionally, no clear preference emerges
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Fig. 11 The Taylor diagram of
selected models
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between several other model pairings, such as XGMO_
XGHG, ADAF_ADHG, and XGAF_ XGAMCH, which
show similar performance levels. However, certain com-
binations, like XGAF_ XGAMCH (p-value =0.6846) and
ADAF_ADHG (p-value=0.6710), consistently perform

@ Springer

well, demonstrating significant differences when compared
to others, particularly outperforming lower-performing pairs
like XGB_XGMO (p-value=0.1505) and ADCS_ADHG
(p-value =6.81E-06).
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Table 8 Result of Wilcoxon test

Difference of models Parameter Difference of models  Parameter
p_value p_value
XGB_XGAF 0.012242 XGMO_ADAF 5.82E-19
XGB_XGCS 0.072716 XGMO_ADCS 2.56E-08
XGB_XGMO 0.150498 XGMO_ADMO 1.21E-06
XGB_XGHG 0.145147 XGMO_ADHG 5.98E-10
XGB_XGAMCH 0.056635 XGMO_ADAMCH 1.33E-10
XGB_ADA 7.84E-20 XGHG_XGAMCH 0.255295
XGB_ADAF 3.97E-28 XGHG_ADA 1.45E-11
XGB_ADCS 492E-17 XGHG_ADAF 9.26E-20
XGB_ADMO 1.67E-14 XGHG_ADCS 1.17E-09
XGB_ADHG 1.80E-17 XGHG_ADMO 4.97E-08
XGB_ADAMCH 5.86E-20 XGHG_ADHG 1.29E-10
XGAF_XGCS 0.615935 XGHG_ADAMCH 1.03E-11
XGAF_XGMO 0.114656 XGAMCH_ADA 9.52E-10
XGAF_XGHG 0.10491 XGAMCH_ADAF 5.90E-21
XGAF_XGAMCH 0.684584 XGAMCH_ADCS 1.99E-08
XGAF_ADA 1.99E-09 XGAMCH_ADMO 7.47E-07
XGAF_ADAF 1.27E-21 XGAMCH_ADHG 8.33E-10
XGAF_ADCS 1.75E-08 XGAMCH_ 7.11E-11
ADAMCH

XGAF_ADMO 8.00E-07 ADA_ADAF 0.606313
XGAF_ADHG 5.69E-10 ADA_ADCS 3.10E-10
XGAF_ADAMCH 3.26E-11 ADA_ADMO 1.28E-14
XGCS_XGMO 0.289442 ADA_ADHG 0.12244
XGCS_XGHG 0.208925 ADA_ADAMCH 1.66E-05
XGCS_XGAMCH  0.342312 ADAF_ADCS 3.42E-17
XGCS_ADA 6.81E-06 ADAF_ADMO 4.09E-13
XGCS_ADAF 3.00E-09 ADAF_ADHG 0.670999
XGCS_ADCS 0.000965 ADAF_ADAMCH 1.85E-08
XGCS_ADMO 0.002831 ADCS_ADMO 0.824608
XGCS_ADHG 1.04E-05 ADCS_ADHG 1.46E-10
XGCS_ADAMCH  3.06E-05 ADCS_ADAMCH 1.69E-13
XGMO_XGHG 0.648296 ADMO_ADHG 9.67E-16
XGMO_XGAMCH 0.155277 ADMO_ADAMCH 7.49E-16
XGMO_ADA 5.25E-10 ADHG_ADAMCH 5.95E-06

Comparison with Existing Literature
Following are the comparative descriptions:

e Al-Asadi and Tasdemir [80] proposed a machine learn-
ing—based method to predict football players’ market
values using FIFA 20 data. Four regression mod-
els (Linear Regression, Multiple Linear Regression,
Regression Tree, and Random Forest Regression) were
tested, with Random Forests achieving the best accu-
racy and lowest error with R? and RMSE values of 0.95

and 1,649,921. These results are comparable with the
prediction performance of single models in this study,
but it is weaker compared with hybrid and ensemble
prediction methods.

e Behravan and Razavi [10] used a hybrid regression
model combining Particle Swarm Optimization (PSO)
and Support Vector Regression (SVR) to predict player
values, with PSO optimizing feature selection and
parameter tuning for SVR. The results showed that
the method achieved R? of 0.74 in value estimation
which has considerable difference with high accuracy
obtained by prediction models in this study.

Sensitivity Analysis

SHAP (Shapley Additive Explanations) [81] is a tool for
locally analyzing predictions by breaking them down into
individual feature contributions. This method is motivated
by scenarios like linear regression with structured data and
continuous response, where predictions are expressed as:

Vi =bo+bixy; + o +byxy (20)

where y; denotes the i — th estimation result, {x;, ..., x,} are
the predictors, and {b, ..., b,} are the predicted regression
coefficients. If the predictors are independent, the contri-
bution of the k — th predictor to the predicted response ¥,
can be expressed as b.x;; fork = 1,... d. SHAP represents
an extension of this principle to encompass more intricate
models within the domain of supervised learning, where F is
the entire set of features, and S denotes a subset. S U i repre-
sents the union of the subset S and feature i. E[f(X)|Xy = x]
is the conditional expectation of f(-) when a subset S of
features are fixed at x (local point).

SHAP value to measure the contribution of the i — th
feature is defined as follows [82]:

ISIAF] =181 -1

!
0= T B OO = x5l - BV =551} (21)

SCF/{i}

SHAP has demonstrated its adherence to favorable
properties, including fairness and consistency, in assign-
ing importance scores to individual features.

In this study, AHAP is utilized to detect the sensitivity
of market value predictions by XGB to selected features.
In Fig. 13, the X-axis represents data points, and SHAP
values (model’s output) are presented on the Y-axis. The
explanation for the 12th and 68th samples in the testing
dataset is illustrated in Fig. 13. As it is evident, Reactions,
Ball control, and Dribbling were the factors that affected
predicted market values most, indicating that exact reports
of such factors may lead to more accurate estimations of
the market value of players.

@ Springer



88 Page 22 of 25

Cognitive Computation (2025) 17:88

Fig. 13 Explanation generated
by SHAP visualized with force
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Conclusions and Real-World Applications

Various factors, including performance evaluators of football
players such as reactions in critical situations of match and
ability to control the ball, to the popularity level of play-
ers, especially in well-known leagues, influence a football
player’s value in the competitive transfer market. To over-
come this, multidimensionality machine learning estima-
tors are the best solutions for more accurate predictions
of players’ value. They assist in strategic decision-making
in football clubs, allowing them to focus on players with
optimal market value predictions for team performance
improvement and ensuring future financial benefits. Sofifa.
com is one of the most popular football-related data sources
utilized for extracting a comprehensive dataset of FIFA19
and real-world statistical sources. This study pursues three
main objectives: first, to identify the most relevant features
extracted for players across various popularity levels from
five top-tier European leagues that influence their market
value; second, to evaluate the prediction performance of
advanced machine learning methods in forecasting the mar-
ket value of players with different popularity levels from
these leagues; and third, to assess the effectiveness of vari-
ous variables in predicting market value using SHAP-based
explainable machine learning techniques.

The compiled dataset went through detailed preprocess-
ing, feature selection, and engineering. Two filtering-based
feature selection methods independently assigned scores
to features, allowing the selection of a relevant subset (20
features). Prediction outcomes related to Adaptive Boosting
(ADA) and Extreme Gradient Boosting (XGB) base mod-
els and their hybrid versions (optimized with Ali Baba and
Forty Thieves (AFT), Crystal Structure Algorithm (CSA),

@ Springer

Reactions =95 Volleys = 86

Henry Gas Solubility Optimization (HGSO), and Mayfly
Optimization Algorithm (MOA)) reported and ensemble
outcomes obtained as most reliable predicted values. XGAF
was the best predictor among developed models with an
RMSE value of €1.9 million misestimation. This error was
less than 10% of average market values obtained for players
of five well-known European leagues with 1 (less popular) to
5 (superstars with the highest popularity) reputation indexes.
Also, sensitivity analysis revealed that Reactions, Ball con-
trol, and Dribbling were the factors that affected predicted
market values the most.

Football clubs can directly apply the predictions derived
from the models to inform decision-making in various oper-
ational areas. For instance, the predicted market values of
players can aid in transfer negotiations, allowing clubs to
assess whether the asking price for a player is realistic based
on their predicted value. Clubs could also utilize these pre-
dictions to determine whether investing in younger players,
who may not have the same market value as superstars but
possess significant growth potential, could yield long-term
financial returns. Furthermore, knowing the predicted mar-
ket values can help clubs in contract renewal or termination
decisions, ensuring they align with financial expectations.
Additionally, clubs can leverage these insights to plan strate-
gic investments, such as focusing on acquiring players with
specific skill sets that can generate increased ticket sales and
enhance overall team performance.

While this study presents promising results, several limi-
tations should be acknowledged. First, the results of this
research primarily focused on five well-known European
leagues, which may not necessarily be representative of
other global leagues. The transfer dynamics, player evalu-
ations, and economic factors in these leagues could differ
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from those in smaller leagues or emerging football markets.
As such, while the methods and findings could provide valu-
able insights for clubs within these top-tier leagues, further
studies are needed to assess the applicability of the models
in different league contexts, especially in terms of player
valuation in markets with distinct economic conditions or
player pool characteristics. Additionally, cross-validation
methods and data balancing across reputation indices can
be used in future studies to further validate the robustness
of the models across a broader range of datasets and ensure
the fairness of the predictions. Also, other global sensitiv-
ity methods and techniques are used to assess the sensitiv-
ity of models to input variations. These techniques include
variance-based methods, such as Sobol’s indices and Morris
screening, as well as Fourier-based approaches, like Fourier
Amplitude Sensitivity Testing (FAST) and its extended ver-
sion, eFAST. These methods help identify the individual
contributions of input factors and the interactions between
them in influencing model outputs.
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