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Abstract
In football economics, a player’s transfer market value extends beyond performance metrics, with popularity playing a 
crucial role in clubs’ decisions. Reputation indexes, reflecting a player’s standing in the industry, are derived from various 
sources. Traditional metrics include goals, assists, and defensive prowess, while social media activity (likes on Facebook and 
Instagram), press citations, and Wikipedia page views add a new dimension. This study utilized Fédération Internationale 
de Football Association 19 data and a real-world statistical dataset, encompassing 54 features for 491 players across vari-
ous leagues. After adding valuable data and removing ineffective features and outliers, two filtering-based feature selection 
methods identified the 20 most critical features for predicting market value. The study applied Extreme Gradient Boosting 
and Adaptive Boosting regression models, along with their hybrid forms optimized by metaheuristic algorithms. The Extreme 
Gradient Boosting optimized with the Ali Baba and Forty Thieves algorithm model showed the best performance, with a 
99% match to actual values and a misestimation of around €1.9 million. Ensemble models, averaging predictions from all 
hybrid models, provided reliable market value estimates. These insights help managers make informed decisions to improve 
team performance and secure financial benefits for the club.

Keywords  Market valuation · International reputation index · Football superstars · Filtering feature selection · Boosting 
Tree Regression · Metaheuristic optimization algorithms

Introduction

The sports industry is a hub where diverse interests, span-
ning from political to public, intersect. The growing global 
appeal of football is influenced significantly by both tradi-
tional and social media [1, 2]. An illustration of football’s 
widespread viewership is the UEFA Euros final in 2021, 
attracting an average live audience of 328 million people [3]. 
Success on the field is crucial for football clubs, leading to 
increased financial gains when they progress to the knock-
out stage. Deloitte [4] reports that the top 20 clubs in turno-
ver, belonging to the “Big Five” European football leagues, 
collectively generated revenues surpassing €9.200 million in 

the 2021–2022 season, slightly below the pre-COVID rev-
enues of €9.283 million in 2018–2019 season [5].

Football clubs aim to improve their performance by 
recruiting new players, with options including loans, free 
agent signings, or outright purchases. The latter involves one 
club paying another a transfer fee for the player’s services, 
necessitating negotiation between the involved clubs [6]. 
Striking a balance between the actual transfer fee and the 
perceived value of a player is crucial to minimize potential 
losses if the player underperforms. Beyond club considera-
tions, the transfer value is of interest to fans and analysts, 
who evaluate whether the paid fee aligns with the player’s 
abilities when a new player is acquired [7, 8].

In this context, researchers from different areas of knowl-
edge have begun to specialize in evaluating players and 
studying the factors that affect the market value to predict 
transfer fees [9, 10]. The player’s performance, position (for-
ward, midfielder, defender, or goalkeeper), club, and physi-
cal characteristics (e.g., height and age) are the variables 
most often used in such studies [11–13]. Moreover, Bar-
buscak [14] investigated football player market values using 
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data from transfermarkt.com. Employing a linear regression 
analysis, the study found that factors such as remaining years 
on contracts significantly influenced market values. This 
aligns with previous research by Carmichael et al. [15] and 
Frick [16].

Furthermore, the noteworthy influence of popularity on 
market value, with implications for predicting transfer fees, 
has been recognized. Academic theory on superstardom, as 
outlined by Rosen [17] and Adler [18], proposed that the 
emergence of superstars is only partially determined by 
actual talent in impacting sports competition outcomes; 
additional factors such as popularity are also pertinent. 
Player popularity is also an indicator for football clubs and 
extends its influence to jersey and ticket sales [19]. In their 
study of the Spanish football league, Garcia del Barrio and 
Pujol [20] identified both performance and popularity, meas-
ured through Google search hits, as determinants of football 
player market value. Kiefer [21] utilized Facebook likes to 
gauge player popularity and investigate its correlation with 
performance in the Euro 2012 tournament. Mueller et al. 
[11] adopted various popularity metrics, including Reddit 
mentions and YouTube appearances for market value evalu-
ation, and others considered data from Google Trends [22] 
and Wikipedia views [23]. These studies consistently reveal 
the statistically significant impact of popularity in estimat-
ing market value and predicting football player transfer fees. 
Consequently, it is reasonable to consider popularity as a 
crucial factor affecting the transfer value of players, particu-
larly due to its accessibility.

Artificial intelligence and machine learning techniques 
have become transformative tools in the fields of long-term 
player development, performance evaluation, and injury 
prevention [24, 25]. These technologies enable more accu-
rate analysis and prediction of player performance, as well 
as the identification of potential injury risks, significantly 
enhancing decision-making processes in sports manage-
ment. For instance, Teixeira et al. [26] tested a machine 
learning model for predicting high-intensity actions and 
body impacts in youth football training. Mandadapu et al. 
[27] applied machine learning algorithms to predict Premier 
League match outcomes by analyzing historical data and 
identifying key features that influence results. The research 
also aims to assist in setting bookmaker odds, providing 
insights into the role of various variables in shaping match 
outcomes and opening new opportunities for decision-
making in sports forecasting and betting. Yang et al. [28] 
advanced previous studies on transfer fees in European foot-
ball by applying machine learning methods, such as random 
forest and quantile additive models, to capture non-linear 
effects. Analyzing data from transfermarkt.de, they trained 
models on pre-COVID-19 transfers and compared prediction 
accuracy before and during the pandemic. Their findings 
revealed that models trained pre-COVID-19 significantly 

underestimated transfer fees during COVID-19, especially 
for high- and medium-priced players, questioning the exist-
ence of a cooling-off effect in the transfer market. Addition-
ally, optimization algorithms have gained prominence for 
their efficiency in solving complex high-dimensional opti-
mization problems [29, 30]. Recently, a metaheuristic opti-
mization algorithm named football optimization algorithms 
has been developed based on tactical gameplay elements 
like short passes, long passes, and positional adjustments 
to balance exploration and exploitation within the solution 
space [31]. Also, many researchers have utilized optimiza-
tion algorithms for hybrid prediction model development 
in football-related fields. For instance, Morciano et al. [32] 
predicted the above-team-average performance of football 
players using supervised machine learning algorithms. The 
algorithms were trained and tested on four biometric param-
eters as inputs and seven performance indicators as labels, 
optimized using grid-search and two versions of the whale 
optimization algorithm, one standard and another proposed 
by the authors incorporating Euclidean distance. The anal-
ysis accounted for player roles (strikers, midfielders, and 
defenders) to address the varying skill requirements.

Incorporating explainable machine learning techniques 
into sports analytics offers a transformative approach to 
understanding the multifaceted factors influencing football 
player valuation. Unlike traditional predictive methods, 
explainable machine learning techniques emphasize trans-
parency and provide stakeholders with a clearer under-
standing of how model predictions are generated [33, 34]. 
Techniques such as Shapley Additive Explanations (SHAP) 
enable researchers to quantify the contribution of each fea-
ture, such as popularity metrics, performance indicators, and 
demographic variables, to a model’s predictions, offering 
actionable insights. Recent studies have applied SHAP as an 
explainability technique to assess the influence of individual 
features on predictions in various fields related to sports, 
such as performance analytics in professional basketball, 
focusing on the varying influence of key performance indi-
cators on match outcomes [35] or to assess the influence of 
individual features on match-specific score predictions in 
football [36, 37]. Plakias et al. [38] developed an explainable 
machine learning model identifying factors crucial for secur-
ing a top-three position in French Ligue 1, ensuring UEFA 
Champions League qualification. Also, Moustakidis et al. 
[34] identified key team-level performance indicators influ-
encing football match outcomes using explainable machine 
learning techniques. By analyzing team-specific features 
such as ball possession and pass behaviors, the pipeline 
incorporates data preprocessing, feature selection, model 
training, and SHAP-based explainability. Furthermore, 
the integration of explainable machine learning allows the 
development of improved, interpretable ML tools that bridge 
the gap between predictive accuracy and usability.
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It is rare in the existing literature to use real-world and 
virtual football simulation game datasets for predicting the 
market value of players based on their attributes, perfor-
mance metrics, popularity scores, and transfer market values 
for various seasons. Also, feature selections by decision-
making and the development of explainable machine learn-
ing models and ensemble predictions are the technical gaps 
in the literature. In this investigation, the aim is to determine 
the most relevant features among those extracted for players 
with various popularity levels from five top-tier European 
leagues on their market value and examine the prediction 
capability of different machine learning models. At the 
conclusion of this research, the following questions will be 
addressed: Which variables are most influential in predict-
ing players’ market values, and are they primarily related 
to player information, physical and performance attributes, 
or game statistics? Which optimization algorithm performs 
best in optimizing players’ market value predictions? What 
insights can be drawn from explainable machine learning 
models, and what are the practical interpretations of these 
predictions? How can clubs utilize estimated market values 
during player negotiations?

The organization of the research is as follows:
In the “Dataset Exploration” section, the employed data 

source (FIFA19 in Sofifa.com) is introduced as a prominent 
football-related data platform, which includes player attrib-
utes, performance metrics, popularity, and transfer market 
values. Then, the dataset went under preprocessing, and 
the most imperative features were selected. The popularity 
index of players is one of the important features selected as 
the base of feature engineering. In the “Machine Learning 
Algorithms” section, regression boosting methods (Adaptive 
Boosting (ADA) and Extreme Gradient Boosting (XGB)) 

for structured data were reviewed, and four metaheuristic 
optimization algorithms, including Ali Baba and Forty 
Thieves, Crystal Structure Algorithm, Henry Gas Solubil-
ity Optimization, and Mayfly Optimization Algorithm, were 
introduced for hybrid model development. In the “Statistical 
Evaluation Metrics” section, the optimized hyperparameters 
of two base models are reported, and the iterative optimiza-
tion procedure is illustrated. Then, the prediction perfor-
mance of developed models was evaluated through statistical 
parameters and comparative analysis conducted by various 
figures. Also, error values in estimating the market value of 
sample players with different levels of international reputa-
tion were presented to examine the accuracy of predictions 
in detail. In the “Discussion of Results” section, the novel 
SHAP method for explaining the sensitivity of predicted val-
ues is presented to assess the generalization performance 
of estimations and give valuable insights for future works. 
Finally, concluded results and real-world applications are 
presented. Framework of the research is presented in Fig. 1.

Dataset Exploration

Data Collection

The dataset of the study was extracted from [39], for which 
https://​sofifa.​com/?r=​19007​5&​set=​true was the original 
reference. Sofifa.com is a prominent online database for 
football-related data, particularly focusing on player statis-
tics within virtual football simulation games. The platform 
offers a wealth of information, including player attributes, 
performance metrics, popularity, and transfer market value 

Fig. 1   Research framework

https://sofifa.com/?r=190075&set=true
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across various seasons, as is clear in Fig. 2 for Cristiano 
Ronaldo and Kylian Mbappé in FIFA 19.

Enthusiasts, analysts, and researchers have widely uti-
lized this dataset. In research focused on predicting foot-
ball player market values, Kirschstein and Liebscher [40] 
employed machine learning techniques, utilizing data from 
the FIFA16 video game. Their model estimated player mar-
ket values based on skill variables in FIFA, aligning this 
information with actual market values from the German First 
Division and Second Division sourced from transfermarkt.
com. Results indicated a significant impact of a club’s repu-
tation on player market values. Behravan and Razavi [10] 
utilized the FIFA20 dataset to predict football player market 
values, emphasizing the importance of considering different 
player positions and overall ratings in their research.

Data Preprocessing and Feature Selection

The FIFA19 dataset used in this study comprised 53 features 
for 491 sampled players. Data engineering was necessary to 
estimate market values accurately, accounting for different 
reputation indexes in well-known European football leagues. 
To clean the dataset and exert necessary modifications on the 
dataset, preparing for the regression-based prediction task, 
the following steps were conducted:

1.	 During the initial preprocessing phase, seven samples 
were excluded due to incomplete feature values.

2.	 Following this, the dataset was enriched by extracting 
corresponding leagues and playing positions for each 

player based on club and player names. This led to the 
addition of two new columns, “league name” and “play-
ing position.”

3.	 To ensure the stability of the target value and prevent 
excessive variation, 27 players from less professional 
leagues with lower-value players were excluded from 
the dataset. A substantial majority of the 457 remaining 
players were affiliated with defenders, forwards, mid-
fielders, and players with dual professional positions 
(forward and midfielder) in Serie A, Premier League, 
League 1, La Liga, and Bundesliga.

4.	 Certain feature columns lacking analytical significance, 
such as player nationality, were omitted, resulting in a 
final set of 47 features (Specified in Table 1).

5.	 Nominal features like footedness (preferred foot), weak 
foot, and league name were converted to numerical 
labels, enhancing their suitability for machine-learning 
regression tasks.

Feature selection demonstrates its effectiveness in dimin-
ishing dimensionality, eliminating irrelevant data, boosting 
learning accuracy, and refining the comprehensibility of the 
obtained results. Filter, wrapper, and embedded represent 
the three primary categories of feature selection methods 
employed in learning contexts. The filter method is the 
most prevalent, involving the selection of features without 
the use of a machine learning algorithm. Essentially, this 
method filters out irrelevant features through various selec-
tion principles. Filter methods employ selection criteria to 

Fig. 2   Presented data for Cristiano Ronaldo and Kylian Mbappé on Sofifa.com
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assign scores to features in the training dataset, followed 
by a ranker search method that ranks each feature based on 
computed scores (Tang et al., 2014). Features with higher 
informativeness receive elevated scores, while less informa-
tive ones receive lower scores. The resultant complete set 
of features, ranked according to computed scores, is then 
presented to the end user for subset selection. Diverse filter-
based feature selection methods, such as Variance Infla-
tion Factor (VIF)–based, Pearson’s correlation–based, and 
mutual-information-based feature selection, exist based on 
the selection principles applied.

VIF‑Based Feature Selection

A popular measure for identifying multicollinearity between 
independent variables in a dataset is VIF. Interpreting the 
link between the characteristics and the target variable can 
be challenging due to multicollinearity, which can lead 
to instability in the calculated regression coefficients. By 
calculating the extent to which the correlation with other 
characteristics inflates the variance of a feature’s coefficient, 
VIF measures the degree of multicollinearity [41, 42]. This 
equation is used to calculate it:

where the coefficient of determination for the dataset’s ith 
feature is denoted by R2

i
 . In this study, the threshold of 10 

has been utilized for selecting the features as illustrated in 
Fig. 3. Among all 47 features, 8 variables had VIF ≥ 10 and 
removed from dataset. So 39 features were in the selected 
features set showing less mutlicolinearity. Therefore, other 
feature selection methods utilized to select more decreased 
number of features for prediction.

Correlation‑Based Feature Selection

The underlying concept of correlation-based feature 
selection is not dependent on specific data transforma-
tions; it necessitates a means of quantifying the corre-
lation between any pair of variables. Consequently, this 
technique is versatile and applicable to various supervised 
problems, including those involving the prediction of vari-
ables. It is an entirely automated algorithm, eliminating 
the need for users to specify thresholds or the number of 

(1)VIF =
1

1 − R2
i

Table 1   Feature selection–based ranking of the features by decision-
making between Pearson’s correlation coefficients and Mutual Infor-
mation scores

Features Pearson’s corre-
lation coefficient

Mutual 
information 
score

TOP-ranked 
features 
(TOPSIS)

Playing Position 8.05E-02 3.48E-02 -
Age 3.93E-01 3.14E-02 -
League 9.06E-01 1.55E-02 -
Preferred Foot 1.19E-01 4.55E-02 -
International Repu-

tation
4.02E-47 2.36E-01 8

Weak Foot 5.56E-03 7.74E-03 -
Skill Moves 9.45E-10 1.00E-01 -
Height 1.09E-02 0.00E + 00 -
Weight 2.67E-01 0.00E + 00 -
Crossing 1.79E-10 4.86E-02 -
Finishing 1.01E-10 1.41E-01 14
Heading Accuracy 2.24E-01 3.52E-02 -
Short Passing 2.36E-29 3.69E-01 4
Volleys 4.53E-13 1.27E-01 16
Dribbling 1.45E-20 2.92E-01 6
Curve 4.30E-15 2.23E-01 9
Free Kick Accuracy 3.60E-15 1.59E-01 12
Long Passing 2.74E-13 1.95E-01 10
Ball Control 3.93E-39 4.85E-01 2
Acceleration 5.28E-07 8.24E-02 20
Sprint Speed 4.42E-05 1.21E-02 -
Agility 3.39E-10 3.86E-02 -
Reactions 9.62E-49 4.96E-01 1
Balance 1.66E-07 8.81E-02 -
Shot Power 1.14E-11 1.59E-01 13
Jumping 8.10E-01 2.82E-02 -
Stamina 1.32E-09 1.11E-01 18
Strength 6.56E-01 0.00E + 00 -
Long Shots 1.18E-13 1.90E-01 11
Aggression 6.52E-01 4.25E-02 -
Interception 8.57E-01 2.84E-02 -
Positioning 1.24E-11 2.38E-01 7
Vision 1.02E-20 3.98E-01 3
Penalties 1.83E-10 1.08E-01 19
Composure 8.94E-38 3.60E-01 5
Marking 4.56E-01 9.47E-02 -
Standing Tackle 6.15E-01 7.74E-02 -
Sliding Tackle 4.35E-01 6.43E-02 -
Games Played 1.46E-01 1.91E-02 -
Games Started 1.47E-02 2.74E-02 -
Minutes Played 6.05E-02 4.93E-02 -
Goals 1.33E-12 3.75E-02 -
Assist 2.22E-13 3.69E-02 -
Shots on Goal 5.17E-14 1.22E-01 -
Shots 3.61E-11 1.39E-01 17
Yellow Card 1.44E-01 0.00E + 00 15

Table 1   (continued)

Features Pearson’s corre-
lation coefficient

Mutual 
information 
score

TOP-ranked 
features 
(TOPSIS)

Red Card 5.34E-01 7.07E-03 -
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features to be selected, although such parameters can be 
easily incorporated if desired. Importantly, this method 
functions as a filter, avoiding the computational costs asso-
ciated with repetitively employing a learning algorithm 
[43].

According to this approach, a feature Vi is said to be rel-
evant if there exists some vi and c for which p(Vi = vi) > 0:

Empirical findings in the field of feature selection empha-
size the necessity of removing not only irrelevant features 
but also redundant information. A feature is deemed redun-
dant when it exhibits a high correlation with one or more 
other features. Therefore, an effective feature subset is char-
acterized by features that are highly correlated with the tar-
get value yet display low correlations with each other.

If the correlation between each component in a test and an 
external variable is known, along with the inter-correlation 
between each pair of components, the correlation between a 
composite test (formed by summing the components) and the 
external variable can be anticipated from these parameters.

where rzi represents the correlation between the summed 
components and the outside variable, k is the number of 
components, rzi is the average of the correlations between 
the components and the outside variable, and rii is the aver-
age inter-correlation between components.

Equation (2) represents Pearson’s correlation coefficient, 
standardized for all variables. It indicates that the correlation 
between a composite and an external variable depends on 
the number of component variables, their inter-correlations, 

(2)p(C = c|Vi = vi) ≠ p(C = c)

(3)rzc =
krzi√

k + k(k − 1)rii

and the correlations between components and the external 
variable.

Higher correlations between components and the exter-
nal variable elevate the overall composite-external variable 
correlation. Lower inter-correlations among components are 
linked to a stronger composite-external variable correlation. 
Additionally, increasing the number of components in the 
composite while maintaining consistent intercorrelations 
with other components and the external variable leads to a 
heightened correlation between the composite and the exter-
nal variable.

Mutual Information–Based Feature Selection

In information theory, mutual information I(X;Y) is the 
amount of uncertainty in X due to the knowledge of Y  [44, 
45]. Mathematically, mutual information is defined as

where p(x, y) is the joint probability distribution function 
of X and Y  , and p(x) and p(y) are the marginal probability 
distribution functions for X and Y  . We can also say

In this framework, where H(X) represents marginal 
entropy, H(X|Y) is conditional entropy and H(X;Y) is joint 
entropy, mutual information serves as a measure of informa-
tion gain between features and class attributes. Employing 
a greedy strategy, the method selects features that provide 
maximum information about the class attribute with minimal 
redundancy from the remaining set.

(4)I(X;Y) =
∑
x,y

p(x, y)log
p(x, y)

p(x)p(y)

(5)H(X;Y) = H(X) − H(X|Y)

Fig. 3   Variance Inflation Factor 
results in feature selection
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Then, TOPSIS (Order Priority Technique by Similari-
ties to Ideal Solution) [46], as a simple ranking method, 
attempted to choose alternatives that simultaneously have 
the lowest Pearson’s correlation coefficient and highest 
Mutual Information score. The optimal number of features 
(20 top features) was selected based on reports in Table 1.

Feature Engineering

In football, a handful of players labeled as superstars sig-
nificantly impact a club beyond their on-field performance, 
influencing their transfer market values [47]. Clubs invest 
in popular players for global commercial appeal, enhanc-
ing profitability through various channels. Record-breaking 
transfers, like Cristiano Ronaldo’s €94 million move in 2009, 
and ongoing record-breaking transfers, including those of 
Ousmane Dembélé (€140 million), Kylian Mbappé (€145 
million plus €35 million commission), and Neymar Jr (€222 
million), prompt examination into the factors influencing a 
player’s market value.

To be able to answer the question: “How is the distribu-
tion of players with a reputation index of 1 (least popular) 
to 5 (most popular) in five top-tier European leagues, and 
what effect has it had on the average market value of play-
ers in these leagues?” useful reports are provided in Fig. 4 
and Table 2.

Premier League had the largest number of players 
with a reputation index of 3 and 4, and the average mar-
ket value of its players with a reputation index of 4 was 

higher than other leagues. Moreover, in other groups, 
players with marginal differences with La Liga were the 
second most expensive players. League 1 also had one 
expensive superstar, but dominant players in this league 
were less popular ones with the lowest market value. La 
Liga paid the highest range of salaries to less popular play-
ers. All these contributions led to conclude that managers 
of clubs in League 1 and Serie A were more concentrated 
on attracting superstars to earn more from ticket sales and 
reach a high level of performance based on their expe-
rience. Nevertheless, managers of Premier League clubs 
are more concentrated on players with low reputations but 
batter international reputations in the future and pay high 
amounts of money for those players. However, in La Liga 
and Bundesliga, managers preferred to invest in less popu-
lar players with low market values and concentrated on 
the experience of coaches in training them well to create 
new superstars.

Machine Learning Algorithms

Extreme Gradient Boosting (XGB)

XGB, a highly effective gradient boosting machine (GBM) 
method, is well-known for its versatility in tackling super-
vised learning problems, including regression and clas-
sification. It is popular among data scientists because of 
its fast execution speed, which is due to its out-of-core 
processing capabilities [48]. XGBoost uses a set of equa-
tions to create predicted outputs ŷi for ensemble tree 
models on a dataset DS with n instances and m features 
DS = {

(
Xi, yi

)
∶ i = 1… n, xi ∈ Rm, yi ∈ R}

The variable K defines the number of trees, whereas fk 
indicates the Kth tree.

To solve the given equation, the key is to minimize both 
the loss and regularization objectives by identifying the 
optimal set of functions.

(6)A.i = ∅
(
Xi

)
=

K∑
k=1

fk
(
Xi

)
, fk ∈ F

Fig. 4   Frequency of five top-tier European League football players in 
each category of reputation index

Table 2   Average market values 
(€) of football players in each 
category of the reputation index

League Reputation index

1 2 3 4 5

Serie A 7,602,206 12,490,854 31,640,000 57,000,000 77,000,000
Premier League 9,293,103 17,420,000 37,156,250 65,000,000 -
League 1 6,586,170 10,744,444 34,312,500 44,750,000 118,500,000
La Liga 11,479,069 18,704,545 38,300,000 52,000,000 95,250,000
Bundesliga 8,951,250 15,125,000 19,012,500 40,875,000 -



	 Cognitive Computation           (2025) 17:88    88   Page 8 of 25

The loss function, written as 1, is defined by the difference 
between the expected output ŷi and the real output yi

O serves as a metric assessing the model’s complexity to 
mitigate overfitting, and its calculation is governed by Eq. (7):

The weight assigned to each leaf is signified by W, and the 
whole number of leaves is symbolized by T.

During model training, decision trees are boosted to reduce 
the objective value iteratively. As the model begins to learn, 
it incorporates a new function (tree) symbolized by Eqs. (9) 
to (12):

(7)�(∅) =
∑
i

1
(
yi,A.i

)
+
∑
k

Ω
(
fk
)

(8)Ω
�
fk
�
= �T +

1

2
�‖w‖2

(9)�(t) =

n∑
i=1

1(yi,A⋅
(t−1)

i
+ ft(Xi)) + Ω(f )

(10)Ωsplit =
1

2

⎡⎢⎢⎢⎣

�∑
i∈IL

gi

�2

∑
i∈IL

hi + �
+

�∑
i∈IR

gi

�2

∑
i∈IR

hi + �
−

�∑
i∈Igi

�2
∑

i∈Ihi + �

⎤⎥⎥⎥⎦

(11)gi = �At−11(yi,A.
(t−1))

(12)hi = �2At−11(yi,A.
(t−1))

Figure 5 depicts the schematic representation of XGB.

Adaptive Boosting (ADA)

Schapire [49] first proposed boosting techniques in 1990 
to overcome the apparent weakness of decision trees when 
employed alone. Despite its limited capabilities, deci-
sion trees can be successively merged to produce a strong 
learner. The boosting technique iteratively adds new tree 
models to the ensemble, with each addition resulting in the 
replacement of the weakest tree. This guarantees that only 
the strongest tree contributes to the ensemble, gradually 
increasing the overall model efficiency, as shown in Eq. (12). 
However, issues developed after creating the initial basic 
tree model, with some samples in the dataset properly cat-
egorized and others misclassified. The approach improves 
the model’s performance over time by doing repetitive com-
putations and gradually building up tree models.

The notation T
(
xi
)
 refers to the newly added tree, Gn−1(x) 

to the overall model produced in the previous round, and 
Gn(x) to the overall model obtained after adding the new 
tree. The prediction result of the ith tree is indicated by yi.

The AdaBoost technique overcomes restrictions by gradu-
ally enhancing the model’s classification skills through con-
tinual training. It starts by generating an initial weak classi-
fier from training samples and then combining misclassified 

(13)Gn(x) = Gn−1(x) + argminh

n∑
i=1

L(yi,Gn−1(x) + T
(
xi
)
)

Fig. 5   Schematic representation of the XGB tree
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examples with untrained data. The learning process is then 
used to generate further weak classifiers, and this iterative 
process is done several times. Each cycle consists of merging 
misclassified samples with untrained data to generate a new 
training sample [50]. This incremental technique improves 
the model’s overall performance as a weak classification 
method. The AdaBoost method generates a robust classi-
fier by combining numerous weak classifiers. It improves 
proper categorization by allocating different weights to 
samples. Correctly categorized samples are given lower 
weights, while incorrectly classified samples are given 

higher weights. This method pushes the model to prioritize 
misclassified data, increasing its capacity to accurately iden-
tify them in subsequent rounds [51].

Figure 6 depicts the computation process for the Ada-
Boost technique, in which each basic tree model is trained 
by modifying the weight distribution of each dataset sample. 
This results in varying training outcomes for each training 
dataset, and the final results are calculated by adding all the 
individual results [52].

The provided pseudocode outlines the AdaBoost algo-
rithm [54].

Algorithm 1:  Pseudocode outlining the AdaBoost algorithm.

Input: a set , of labeled samples: = (( , ), = (1, 2, … , )), with labels in 

Learn

A constant 

Initialize for all : ( ) = 1⁄ // initialize the wights

For = 1 to do

For all 

Calculate normalized weights ( ) =
( )

∑ ( )

ℎ = ( , ) // call weak Learn with normalized weights

Compute the error of ℎ = ∑ ( ) [ℎ ( ≠ )]

If >
1

2
then

= -1     =
1−

For all :  

Estimate new weights         +1( ) = ( )
1−[ℎ ( − )]

End For

Output:  ℎ ( )= ∑ (log
1

ℎ
) [ℎ ( = )]

arg max

∈ =1

Ali Baba and Forty Thieves Algorithm (AFT)

Malik et al. invented the AFT algorithm, which was inspired 
by Ali Baba and the Forty Thieves [55]. The algorithm 
reflects the repetitive aspect of the story, as a band of rob-
bers pursues Ali Baba. Countermeasures in the novel, car-
ried out by the main character, Marjane, are consistent with 
adaptive techniques in the algorithm. The village where 
Ali Baba dwells represents the algorithm’s search space. 
Clever techniques from the narrative inspire the algorithm’s 

exploration efficiency, serving as the foundation for math-
ematical models in the AFT algorithm’s construction and 
development.

The fundamental goal of this project is to employ an 
optimization approach that uses Ali Baba and the Forty 
Thieves story as a unified model for human social interac-
tion. The study connects aspects of the narrative, such as the 
thieves’ coordinated attempts to find Ali Baba’s residence, 
their range of travel, and Marjane’s ingenious strategies to 
deceive them, to an objective function for optimization. This 
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approach leads to the creation of a novel metaheuristic tech-
nique, which is discussed in the following sections [56].

The AFT algorithm initializes by randomly positioning 
individuals (thieves) in a multidimensional search space, 
with each location representing a potential solution within 
defined boundaries. Fitness values, derived from a user-
defined objective function, guide the search process, where 
thieves update their positions if a better solution is found. 

The search mimics the pursuit of Ali Baba, employing strate-
gies like refining positions using shared knowledge, random 
exploration when misled, and balancing exploration and 
exploitation through global and individual best solutions. 
These adaptive strategies enhance the algorithm’s optimiza-
tion capability in complex problem spaces.

The AFT algorithm’s pseudocode can be concisely out-
lined through the iterative steps provided in Algorithm 2.

Algorithm 2:  A pseudocode description of the AFT.

 and  represent the upper and lower bounds of the  measurement, respectively.  denotes the position, 

and  indicates the number of thieves. 

Prepare the location for the best  and the global best  location. 

Assess the fitness function. 

Set  

While (  do 

T  

P  

For  do 

If ( ) then 

If ( ) then 

  

Else 

 

Else If 
Else 

 

End If 

End For 

For  do 

Inspect, assess, and revise the new positions. 

Assess and revise the solutions for  , ,  

End For 

 

End While 
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Crystal Structure Algorithm (CSA)

Crystals are solid minerals with atoms and particles struc-
tured in a periodic crystalline shape. The name is derived 
from the Greek word for Cold-Frozen. Discovered by 
Kepler, Hooke, and Hogens in the seventeenth century 
[57], crystals exhibit a cyclical arrangement of atoms 
that forms a lattice, influencing the overall structure. 
The crystal lattice, characterized by infinite geometric 
forms, gives rise to diverse shapes [58]. The structure is 
discontinuous, defined by an endless lattice form, with 
each lattice point connected to its position. Crystals vary 
in size and form, and their properties might be anisotropic 
or isotropic [59].

The CSA optimizes solutions by simulating crystallo-
graphic processes, where crystal positions are initialized 
randomly within defined bounds. Iterative updates refine 
these positions using four improvement strategies (basic, 
optimal, average, and combined cubic), guided by the best 
crystal configurations and their mean merit. The algorithm 
balances exploration and exploitation through dynamic 
adjustments, ensuring effective convergence. A boundary 
flag maintains constraints on variable solutions, and opti-
mization ends after a set number of iterations, signaling 
the completion of the search process. Figure 7 illustrates 
the technique using a flow chart.

Henry Gas Solubility Optimization (HGSO)

The Henry Gas Solubility Optimization algorithm, inspired 
by Henry’s gas law, is a novel physics-based optimization 
method introduced by Hashim et al. It utilizes the principles 
of gas solubility in liquids, with a focus on low-solubility 
gases [60]. The main contributing elements are temperature 
and pressure, with higher temperatures typically increasing 
solid solubility and decreasing gas solubility. The program 
uses these insights to optimize operations across a variety 
of applications [61].

The HGSO algorithm improves gas solubility in liquids 
by simulating the effects of increased pressure through an 
eight-step optimization process. It begins by initializing 
gas populations, positions, Henry’s constants, and partial 
pressures. Gases are grouped by type, and the optimal gas 
in each group is identified based on equilibrium positions. 
The algorithm iteratively updates Henry’s constant using 
temperature-dependent calculations, which influence solu-
bility values for each gas. Positions of gases are dynami-
cally updated, leveraging solubility and fitness evaluations 
to guide the search for optimal solutions. To avoid local 
optima, gas positions are adjusted based on interactions and 
fitness, ensuring exploration and exploitation. Finally, the 
weakest agents are ranked and repositioned, enhancing the 
algorithm’s convergence and overall performance.

The steps of the HGSO algorithm are detailed in 
Algorithm 3.

Fig. 6   Process of AdaBoost 
calculation [53]
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Algorithm 3:  Pseudocode definition of the HGSO.

Starting: (1 = 1, 2, … , ), number of gas types , , , , , 1, 2  3. 

Separate the population of agents into groups based on the gas types, each group having 

the same value for Henry's constant ( ). 

Assess each cluster  

Become the best gas ,  in each cluster, and the finest search agent  

While <maximum number of iterations do 

For each quest agent do  

Update the locations of all search agents using: 

, ( + 1) = , ( ) + × × × ( , ( ) − , ( )) + × × × ( , ( ) × , ( ) − , ( )) 

and  

= × exp (−
( ) +

, ( ) +
) , = 0.05 

End For 

Update Henry's coefficient of each gas type using:  

( + 1) = ( ) × (− (1 ( ))−(1 ))⁄⁄ , ( ) = (− )⁄  

Update the solubility of each gas using: 

, ( ) = × ( + 1) × , ( ) 

Rank and choose the number of worst agents using: 

= ∗ (  (( 2 − 1) + 1), 1;  1 = 0.1, 2 = 0.2 

Update the situation of the worst agents using: 

, =  ( , ) + × ( ( , ) − ( , )) 

Update the best gas , , and the best search agent  

End While  

= +  

Return  

Mayfly Optimization Algorithm (MOA)

Mayflies, categorized under Palaeoptera in the order 
Ephemeroptera, are insects that remarkably emerge in 
May in the UK. Immature mayflies undergo several years 
of growth as aquatic nymphs before transitioning to adult 
mayflies. Male adults typically gather in swarms a few 
meters above the water surface to attract females. Mating 
is a brief process lasting only a few seconds, after which 
eggs are deposited into the water, continuing the cycle. Allan 

and Flecker [62] and Barbara, Peckarsky et al. [63] provide 
detailed information on this behavior. Zervoudakis and 
Tsafarakis [64] introduced MOA as an innovative method 
for addressing problems. This hybrid method merges the 
strengths of traditional optimization methods like PSO [65], 
GA [66], and FA. The elements of MOA are outlined as 
follows:

The motion of male mayflies in the algorithm is deter-
mined by their position and velocity, which are updated 
based on their previous states and the influence of cognitive 
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and social factors. Male mayflies maintain high speeds and 
adjust their movements according to the best solutions they 
have visited (personal best) and the global best, with attrac-
tion and visibility coefficients influencing these updates. The 
nuptial dance introduces a stochastic element to enhance 
exploration, where coefficients gradually decrease with 
iterations. Female mayflies are attracted to high-perform-
ing males, with their movements influenced by the fitness 
of their solutions and the Cartesian distance to the males. 

If a female’s solution is not attracted to a male, a random 
walk component is applied. The algorithm incorporates 
interbreeding, where the top-performing male and female 
mayflies are paired to produce offspring with traits inher-
ited from both parents. These offspring undergo mutation, 
introducing variability and enhancing the exploration of the 
solution space.

Algorithm 4 signifies pseudocode Mayfly Optimization 
Algorithm (MA) [67].

Fig. 7   Flow chart of the Crystal 
Structure Algorithm (CSA)
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Algorithm 4:  Pseudocode delineation of the MOA.

Objective function ( ), = ( 1,… , )

Adjust the male mayfly populace ( = 1, 2, … , ) and velocities 

Adjust the female mayfly populace ( = 1, 2, … , ) and velocities 

Estimate solution

Discovery global best

While stopping criteria are not met

Update velocities and solutions of males and females

Estimate solutions

Rank the mayflies

Mate the mayflies

Estimate offspring

Separate offspring to male and female randomly

Change the best solutions with the best new ones

Update and 

End While
Postprocess results and visualization

Statistical Evaluation Metrics

The performance evaluation of the analyzed models is con-
ducted employing five specified metrics designated as R2 , 
RMSE, MAE, MNB, VAF, and MAPE.

 R2 (Coefficient of Determination):

R2 is a statistical measure denoting the quality of the 
model fit by quantifying how much variability in the depend-
ent variable is accounted for by the independent variable. 
The scale ranges from 0 to 1, where a higher R2 signifies a 
better model fit and an R2 of 1 indicates a complete explana-
tion of the dependent variable’s variability.

RMSE (Root Mean Square Error):

RMSE serves as a metric to measure the average magni-
tude of disparities between predicted and observed values 
in a model. A lower RMSE reflects heightened predictive 
accuracy, signifying minimized discrepancies between the 
model’s predictions and the actual observed values.

MAE (Mean Absolute Error):

MAE assesses model performance by measuring the 
average absolute differences between predicted and actual 

values, offering a direct gauge of accuracy by conveying the 
average magnitude of prediction errors.

MNB (Mean Normalized Bias):

MNB is a statistical metric applied in model evaluation, 
specifically in regression analysis. It gauges the average 
deviation between predicted and actual values, considering 
normalization to provide a comprehensive assessment of 
predictive performance.

VAF (Variance Accounted For):

Variance Accounted For (VAF) is a metric used in regres-
sion analysis or predictive modeling to measure the propor-
tion of variance in a dependent variable explained by an 
independent variable or a statistical model.

MAPE (Mean Absolute Percentage Error):

Mean Absolute Percentage Error (MAPE) is a widely 
used metric for forecast accuracy due to its scale-independ-
ence and ease of interpretation.

Equations (14) to (19) serve as the mathematical repre-
sentations of the metrics mentioned above.
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Symbols Ai and Pi denote the actual observed values and 
corresponding predicted values, respectively. A and P rep-
resent the mean outcomes in testing and predicting, with n 
indicating the total sample count in the analyzed dataset. 
The symbol R serves as a scaling factor specific to each data 
point, commonly employed for normalizing bias.

Discussion of Results

Cross‑Validation

To assess the model’s performance, the dataset is divided 
into subsets based on the K-fold cross-validation. The mod-
els are trained on all but one of these subsets (the “train-
ing fold”) and evaluated on the remaining subset (the “test 
fold”). This procedure is repeated, with each subset being 
used as the test fold exactly once [68]. The final performance 
metrics are reported in Table 3. One of the key advantages 
of cross-validation is that it helps mitigate overfitting, 

(14)R2 =

⎛⎜⎜⎜⎜⎝

∑n

i=1
(Ai − A)(Pi − P)��∑n

i=1
(Ai − P)

2
��∑n

i=1
(Pi − P)

2
�

⎞⎟⎟⎟⎟⎠

2

(15)RMSE =

�∑n

i=1
(Pi − Ai)

2

n

(16)MAE =
1

n

n�
i=1

‖Pi − Ai‖

(17)MNB =
1

n

∑N

i=1

Pi − Ai

R

(18)VAF =

(
1 −

var(bi − b)

var(bi)

)
× 100

(19)MAPE =
1

n

∑N

i=1

Ai − Pi

Ai

providing a more reliable estimate of the model’s gener-
alizability by ensuring that the model is tested on different 
subsets of the data.

Hyperparameter Optimization and Convergence 
Analysis

The learning process of an algorithm is influenced by hyper-
parameters, which represent specific values or weights. XGB 
and ADA, as highlighted earlier, provide an extensive range 
of hyperparameters that can be fine-tuned to maximize 
accuracy. Automated tuning of these learnable parameters 
enables XGB and ADA to effectively identify patterns and 
regularities within datasets. In tree-based models like XGB 
and ADA, these parameters include decision variables at 
each node. Given the complexity of XGB and ADA, with its 
numerous design choices, the primary challenge lies in opti-
mizing the selection of multiple hyperparameters. This can 
be addressed through efficient hyperparameter tuning meth-
ods. In this study, the hyperparameters for XGB and ADA 
were selected based on previous research on detecting effi-
cient hyperparameters [69, 70]. These hyperparameters are 
n_estimators, max_depth, learning_rate, colsample_bytree, 
and subsample. The results of adjusting hyperparameters 
for XGB and ADA models are elaborated in Tables 4 and 
5, respectively.

Convergence graphs are invaluable instruments for visu-
alizing the dynamics of iterative processes across diverse 
domains. Through a deep examination of trends, rates, and 
minimum values, profound insights can be gleaned into the 
efficacy and constraints inherent in the applied processes or 
algorithms [71–74].

Table 3   Cross-validation results Model Metric Metric results through folds (test)

K1 K2 K3 K4 K5

XGB R2 0.806 0.805 0.968 0.882 0.808
RMSE 8,650,976 6,280,439 1,821,063 3,332,494 7,628,000

ADA R2 0.916 0.794 0.927 0.946 0.875
RMSE 6,084,973 4,013,015 6,914,160 2,540,025 8,272,643

Table 4   The results of hyperparameter optimization for XGB

Hyperparameter Models

XGAF XGCS XGMO XGHG

n_estimators 102 104 134 576
max_depth 76 4 56 248
learning_rate 0.0779797 0.435474 0.130039 0.336626
colsample_bytree 0.334355 0.358836 0.763059 0.13099
subsample 0.769512 0.420914 0.302734 0.586162
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Figure 8 illustrates the convergence process of hybrid 
models associated with XGB and ADA. The graph demon-
strates a consistent decrease in RMSE with extended training 
periods, indicating improved model fit and successful learn-
ing of underlying data patterns. The RMSE reduction rate is 
especially swift in the initial periods, followed by a gradual 
stabilization in the later stages.

The XGAF, XGCS, XGMO, and XGHG models dem-
onstrated lower RMSE value (approximately €5 million) in 
the initial iteration compared to the ADAF, ADCS, ADMO, 
and ADHG models. The XGAF model displayed superior 
performance with the lowest RMSE value of €1.91 million 
at the 170th iteration. Additionally, the ADAF model had 
effectively converged, displaying a lower RMSE than other 
ADA-based hybrid models, specifically at €2.69 million in 
160 iterations.

Prediction Performance of Developed Models

Tables  6 and 7 demonstrate the results obtained from 
both the XGB- and ADA-based models, along with 

the corresponding hybrid models for comprehensive 
examination.

In Table 6, a thorough investigation reveals that the XGB 
single model displaying R2 values of 0.9586 and an RMSE 
of €4.55 million demonstrated comparatively lower predic-
tive efficiency. Conversely, the XGAF model outperformed 
others, revealing superior performance with R2 and RMSE 
values of 0.9905 and €1.91 million, respectively. This error 
value is under 10% of average market values reported in 
Table 2 for players with various levels of popularity. Nota-
bly, the XGAF model attained a VAF of 98.8, signifying 
a higher percentage of explained variance and superior 
explanatory power compared to alternative models. Fol-
lowing, the XGAMCH ensemble model secured the second 
position with R2 = 0.9889 and RMSE = 2.03 million euros.

The results presented in Table 7 underscore the superior 
performance of the ADAF model, attaining values of 0.9847 
and €2.69 million for the R2 and RMSE metrics, respec-
tively. Remarkably, the ADAF model exhibited the highest 
VAF value, equal to 977, and an MNB value of − 0.269, 
indicative of a smaller average bias between predicted and 
actual values. The ADAMCH ensemble model secured the 
second position with values of R2=0.9742 and RMSE = 3.23 
million euros.

Also, Fig. 9 illustrates that based on all metric values 
results (except for MNB), XGAF was the best performer, 
and its superiority was more visible in the case of RMSE 
(€2.6 million lower than XGB as the worst model) and MAE 
error values.

Table 5   The results of hyperparameter optimization for ADA

Hyperparameter Models

ADAF ADCS ADMO ADHG

n_estimators 54 60 86 36
learning_rate 0.15145 0.397159 0.252832 0.904226

Fig. 8   The convergence of 
optimization procedures related 
to hybrid models
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Figure 10 illustrates scatter plots for XGB and ADA 
single models, the best-performing XGAF and ADAF 
hybrid models, and the XGAMCH and ADAMCH ensem-
ble models. The scatter plot is the prevalent form of data 
visualization, which employs the method of data represen-
tation for depicting bivariate data ( xi, yi ), aiming to show 
associations between the x and y values in each respective 
pair i [75]. Detailed dispersion points, primarily controlled 
by RMSE and R2 , ensure that higher density corresponds 
to lower RMSE values. A superior fit of the line to the 
data is indicated by a higher R2 value. Within the plots, 
three lines are featured: the best-fit line ( X = Y  ) and two 
dashed lines representing a 15% underestimation and 
overestimation.

The XGB and ADA models feature RMSE values at 
45.5% and 43.1% and the lowest R2 values of 0.9586 and 
0.9532 displayed notable dispersion compared to the Best 
Fit line, suggesting reduced accuracy in predicting the mar-
ket value of football players. Contrastingly, the XGAF and 
ADAF hybrid models displayed outstanding performance, 
displaying significant reductions in RMSE values compared 

to the XGB and ADA models. Particularly, the XGAMCH 
and ADAMCH ensemble models secured a commendable 
second position in the overall performance ranking. The R2 
values for the XGAF and ADAF models stand at 0.9905 and 
0.9847, respectively.

Figure 11 shows the Taylor diagram for the developed 
models. The Taylor diagram compares estimated values by 
models with actual values. It visually represents the stand-
ard deviation ratio, correlation coefficient, and centered root 
mean squared error of each model compared to the reference 
dataset. This allows for easy identification of models that 
perform better in prediction [76].

The XGAF and XGAMCH models exhibited superior 
performance, as evidenced by the highest correlation coef-
ficients and smallest standard deviation, indicating closer 
alignment with the actual market values. Following closely 
in performance assessment is the ADAF model with higher 
RMSE and lowest R2 value. Conversely, the single ADA 
and XGB models displayed the lowest efficiency and perfor-
mance, rendering the models unsuitable for reliable predic-
tions of players’ market values.

Table 6   Metric reports related 
to XGB-based prediction 
models’ performance in players’ 
market value prediction

Model Part Indicator values

RMSE R2 MAE MNB VAF MAPE

XGB Train 4.62E + 06 0.9615 2.31E + 06  − 7.58E-02 9.12E + 01 1.34E + 01
Validation 5.36E + 06 0.9448 2.86E + 06  − 6.11E-02 8.76E + 01 1.53E + 01
Test 3.11E + 06 0.9676 1.82E + 06  − 4.93E-02 9.52E + 01 1.13E + 01
Total 4.55E + 06 0.9586 2.32E + 06  − 6.96E-02 9.12E + 01 1.34E + 01

XGAF Train 1.79E + 06 0.9920 6.79E + 05  − 4.41E-02 9.90E + 01 5.42E + 00
Validation 2.31E + 06 0.9881 1.34E + 06  − 5.13E-02 9.82E + 01 8.88E + 00
Test 2.01E + 06 0.9850 1.31E + 06  − 3.98E-02 9.82E + 01 7.47E + 00
Total 1.91E + 06 0.9905 8.74E + 05  − 4.45E-02 9.88E + 01 6.24E + 00

XGCS Train 2.37E + 06 0.9838 1.85E + 06  − 2.60E-02 9.84E + 01 4.12E + 01
Validation 2.33E + 06 0.9858 1.51E + 06 7.02E-03 9.83E + 01 1.42E + 01
Test 2.76E + 06 0.9697 1.76E + 06  − 2.73E-02 9.69E + 01 9.51E + 00
Total 2.43E + 06 0.9821 1.78E + 06  − 2.12E-02 9.82E + 01 3.24E + 01

XGMO Train 2.74E + 06 0.9784 1.36E + 06  − 2.96E-02 9.77E + 01 1.58E + 01
Validation 3.14E + 06 0.9721 2.09E + 06  − 3.11E-02 9.70E + 01 1.59E + 01
Test 3.12E + 06 0.9611 2.14E + 06  − 3.50E-02 9.60E + 01 1.34E + 01
Total 2.86E + 06 0.9753 1.59E + 06  − 3.06E-02 9.74E + 01 1.54E + 01

XGHG Train 3.36E + 06 0.9710 9.40E + 05  − 2.02E-02 9.62E + 01 4.74E + 00
Validation 4.24E + 06 0.9592 2.22E + 06  − 3.74E-02 9.33E + 01 1.17E + 01
Test 2.46E + 06 0.9757 1.78E + 06  − 3.45E-02 9.75E + 01 1.16E + 01
Total 3.39E + 06 0.9687 1.26E + 06  − 2.50E-02 9.59E + 01 6.81E + 00

XGAMCH Train 1.84E + 06 0.9914 9.65E + 05  − 3.00E-02 9.89E + 01 7.83E + 00
Validation 2.53E + 06 0.9857 1.53E + 06  − 2.82E-02 9.79E + 01 9.18E + 00
Test 2.25E + 06 0.9798 1.47E + 06  − 3.42E-02 9.79E + 01 8.51E + 00
Total 2.03E + 06 0.9889 1.13E + 06  − 3.04E-02 9.86E + 01 8.13E + 00
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Prediction of Market Value for Players with Different 
Reputation Index

To examine the generalization capability of XGAF and 
XGAMCH models in estimating the market value of players 
within various datasets, their effectiveness in the prediction 
of player’s value in each group of reputation index (least 
popular with an index of 1 to most popular with an index of 
5) is presented in Fig. 12. In the case of players with a repu-
tation index of 5, due to the low number of samples, there 
is not a comprehensive representation of error values, but in 
the case of superstars with a reputation index of 4, XGAF 
was the most accurate predictor with most errors lower than 
10%. The estimation performance of XGAF in the remain-
ing two groups of samples became less accurate, with five 
to more than ten times higher error values. In contrast to 
XGAF, XGAMCH demonstrated maximum error in the case 
of the market value of samples with a reputation index of 4. 
However, still, its prediction error in the case of most of the 
players with higher popularity was lower than those with 
least popularity, indicating that introduced estimation mod-
els are reliable market value predictors, especially useful 

for clubs planning to concentrate on popular and expensive 
players with a high risk of decision making in the transfer 
market.

To discuss more on the obtained results, firstly, the Wil-
coxon signed-rank test was conducted to compare models’ 
prediction accuracy in pairs. Then, the prediction perfor-
mance of the developed best prediction models and their 
performance metrics are compared with those of models in 
the literature.

Statistical Testing

This study provides an in-depth analysis of model perfor-
mance by conducting a pairwise comparison of prediction 
models using the Wilcoxon signed-rank test, as proposed 
by Demšar (2006) [77]. A total of 66 pairwise comparisons 
were made, with Bonferroni-adjusted p-values below 0.05, 
indicating significant performance differences between the 
models [78, 79]. The results, as reported in Table 8, show 
that the combination of ADCS_ADMO exhibits the most 
notable performance difference, achieving the highest 
value of 0.8246. Additionally, no clear preference emerges 

Table 7   Metric reports related 
to ADA-based prediction 
models’ performance in players’ 
market value prediction

Model Part Indicator values

RMSE R2 MAE MNB VAF MAPE

ADA Train 4.37E + 06 0.9553 3.54E + 06  − 4.06E-01 9.33E + 01 2.46E + 01
Validation 4.55E + 06 0.9503 3.11E + 06  − 2.23E-01 9.24E + 01 2.01E + 01
Test 3.80E + 06 0.9462 2.54E + 06  − 1.57E-01 9.31E + 01 1.45E + 01
Total 4.31E + 06 0.9532 3.32E + 06  − 3.41E-01 9.31E + 01 2.24E + 01

ADAF Train 2.60E + 06 0.9877 2.20E + 06  − 3.09E-01 9.80E + 01 1.88E + 01
Validation 3.09E + 06 0.9790 2.22E + 06  − 2.03E-01 9.69E + 01 1.67E + 01
Test 2.71E + 06 0.9741 1.95E + 06  − 1.49E-01 9.69E + 01 1.25E + 01
Total 2.69E + 06 0.9847 2.17E + 06  − 2.69E-01 9.77E + 01 1.75E + 01

ADCS Train 3.14E + 06 0.9772 2.52E + 06  − 2.95E-01 9.67E + 01 1.95E + 01
Validation 3.63E + 06 0.9638 2.31E + 06  − 1.64E-01 9.59E + 01 1.59E + 01
Test 2.86E + 06 0.9695 1.98E + 06  − 1.18E-01 9.63E + 01 1.23E + 01
Total 3.18E + 06 0.9739 2.41E + 06  − 2.49E-01 9.65E + 01 1.79E + 01

ADMO Train 3.49E + 06 0.9704 2.76E + 06  − 3.03E-01 9.59E + 01 2.07E + 01
Validation 3.73E + 06 0.9647 2.46E + 06  − 1.66E-01 9.52E + 01 1.69E + 01
Test 3.09E + 06 0.9631 2.15E + 06  − 1.18E-01 9.57E + 01 1.29E + 01
Total 3.47E + 06 0.9685 2.62E + 06  − 2.54E-01 9.57E + 01 1.89E + 01

ADHG Train 3.84E + 06 0.9655 3.17E + 06  − 3.65E-01 9.50E + 01 2.30E + 01
Validation 4.22E + 06 0.9519 2.89E + 06  − 2.33E-01 9.43E + 01 1.99E + 01
Test 3.54E + 06 0.9529 2.43E + 06  − 1.51E-01 9.41E + 01 1.45E + 01
Total 3.86E + 06 0.9616 3.02E + 06  − 3.13E-01 9.48E + 01 2.13E + 01

ADAMCH Train 3.20E + 06 0.9773 2.62E + 06  − 3.18E-01 9.66E + 01 2.03E + 01
Validation 3.60E + 06 0.9666 2.38E + 06  − 1.91E-01 9.58E + 01 1.71E + 01
Test 2.99E + 06 0.9667 2.10E + 06  − 1.34E-01 9.60E + 01 1.28E + 01
Total 3.23E + 06 0.9742 2.50E + 06  − 2.71E-01 9.64E + 01 s 1.87E + 01
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Fig. 9   Comparison of developed models’ performance in predicting the market value of players based on performance metric results

Fig. 10   The scatter diagram illustrates the formulated models
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between several other model pairings, such as XGMO_
XGHG, ADAF_ADHG, and XGAF_ XGAMCH, which 
show similar performance levels. However, certain com-
binations, like XGAF_ XGAMCH (p-value = 0.6846) and 
ADAF_ADHG (p-value = 0.6710), consistently perform 

well, demonstrating significant differences when compared 
to others, particularly outperforming lower-performing pairs 
like XGB_XGMO (p-value = 0.1505) and ADCS_ADHG 
(p-value = 6.81E-06).

Fig. 11   The Taylor diagram of 
selected models

Fig. 12   Comparison between 
real market values of players 
with different reputation index 
and those predicted by best 
models
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Comparison with Existing Literature

Following are the comparative descriptions:

•	 Al-Asadi and Tasdemir [80] proposed a machine learn-
ing–based method to predict football players’ market 
values using FIFA 20 data. Four regression mod-
els (Linear Regression, Multiple Linear Regression, 
Regression Tree, and Random Forest Regression) were 
tested, with Random Forests achieving the best accu-
racy and lowest error with R2 and RMSE values of 0.95 

and 1,649,921. These results are comparable with the 
prediction performance of single models in this study, 
but it is weaker compared with hybrid and ensemble 
prediction methods.

•	 Behravan and Razavi [10] used a hybrid regression 
model combining Particle Swarm Optimization (PSO) 
and Support Vector Regression (SVR) to predict player 
values, with PSO optimizing feature selection and 
parameter tuning for SVR. The results showed that 
the method achieved R2 of 0.74 in value estimation 
which has considerable difference with high accuracy 
obtained by prediction models in this study.

Sensitivity Analysis

SHAP (Shapley Additive Explanations) [81] is a tool for 
locally analyzing predictions by breaking them down into 
individual feature contributions. This method is motivated 
by scenarios like linear regression with structured data and 
continuous response, where predictions are expressed as:

where ŷi denotes the i − th estimation result, {x1i,… , xdi} are 
the predictors, and {b0,… , bd} are the predicted regression 
coefficients. If the predictors are independent, the contri-
bution of the k − th predictor to the predicted response ŷi 
can be expressed as bkxki fork = 1,… d . SHAP represents 
an extension of this principle to encompass more intricate 
models within the domain of supervised learning, where F is 
the entire set of features, and S denotes a subset. S ∪ i repre-
sents the union of the subset S and feature i. E[f (X)|XS = xS] 
is the conditional expectation of f (⋅) when a subset S of 
features are fixed at x (local point).

SHAP value to measure the contribution of the i − th 
feature is defined as follows [82]:

SHAP has demonstrated its adherence to favorable 
properties, including fairness and consistency, in assign-
ing importance scores to individual features.

In this study, AHAP is utilized to detect the sensitivity 
of market value predictions by XGB to selected features. 
In Fig. 13, the X-axis represents data points, and SHAP 
values (model’s output) are presented on the Y-axis. The 
explanation for the 12th and 68th samples in the testing 
dataset is illustrated in Fig. 13. As it is evident, Reactions, 
Ball control, and Dribbling were the factors that affected 
predicted market values most, indicating that exact reports 
of such factors may lead to more accurate estimations of 
the market value of players.

(20)ŷi = b0 + b1x1i +⋯ + bdxdi

(21)𝜙i =
∑

S⊑F∕{i}

|S|!(|F| − |S| − 1)!

|F|! {E[f (X)|XSUi = xSUi] − E[f (x)|XS = xS]}

Table 8   Result of Wilcoxon test

Difference of models Parameter Difference of models Parameter
p_value p_value

XGB_XGAF 0.012242 XGMO_ADAF 5.82E-19
XGB_XGCS 0.072716 XGMO_ADCS 2.56E-08
XGB_XGMO 0.150498 XGMO_ADMO 1.21E-06
XGB_XGHG 0.145147 XGMO_ADHG 5.98E-10
XGB_XGAMCH 0.056635 XGMO_ADAMCH 1.33E-10
XGB_ADA 7.84E-20 XGHG_XGAMCH 0.255295
XGB_ADAF 3.97E-28 XGHG_ADA 1.45E-11
XGB_ADCS 4.92E-17 XGHG_ADAF 9.26E-20
XGB_ADMO 1.67E-14 XGHG_ADCS 1.17E-09
XGB_ADHG 1.80E-17 XGHG_ADMO 4.97E-08
XGB_ADAMCH 5.86E-20 XGHG_ADHG 1.29E-10
XGAF_XGCS 0.615935 XGHG_ADAMCH 1.03E-11
XGAF_XGMO 0.114656 XGAMCH_ADA 9.52E-10
XGAF_XGHG 0.10491 XGAMCH_ADAF 5.90E-21
XGAF_XGAMCH 0.684584 XGAMCH_ADCS 1.99E-08
XGAF_ADA 1.99E-09 XGAMCH_ADMO 7.47E-07
XGAF_ADAF 1.27E-21 XGAMCH_ADHG 8.33E-10
XGAF_ADCS 1.75E-08 XGAMCH_

ADAMCH
7.11E-11

XGAF_ADMO 8.00E-07 ADA_ADAF 0.606313
XGAF_ADHG 5.69E-10 ADA_ADCS 3.10E-10
XGAF_ADAMCH 3.26E-11 ADA_ADMO 1.28E-14
XGCS_XGMO 0.289442 ADA_ADHG 0.12244
XGCS_XGHG 0.208925 ADA_ADAMCH 1.66E-05
XGCS_XGAMCH 0.342312 ADAF_ADCS 3.42E-17
XGCS_ADA 6.81E-06 ADAF_ADMO 4.09E-13
XGCS_ADAF 3.00E-09 ADAF_ADHG 0.670999
XGCS_ADCS 0.000965 ADAF_ADAMCH 1.85E-08
XGCS_ADMO 0.002831 ADCS_ADMO 0.824608
XGCS_ADHG 1.04E-05 ADCS_ADHG 1.46E-10
XGCS_ADAMCH 3.06E-05 ADCS_ADAMCH 1.69E-13
XGMO_XGHG 0.648296 ADMO_ADHG 9.67E-16
XGMO_XGAMCH 0.155277 ADMO_ADAMCH 7.49E-16
XGMO_ADA 5.25E-10 ADHG_ADAMCH 5.95E-06
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Conclusions and Real‑World Applications

Various factors, including performance evaluators of football 
players such as reactions in critical situations of match and 
ability to control the ball, to the popularity level of play-
ers, especially in well-known leagues, influence a football 
player’s value in the competitive transfer market. To over-
come this, multidimensionality machine learning estima-
tors are the best solutions for more accurate predictions 
of players’ value. They assist in strategic decision-making 
in football clubs, allowing them to focus on players with 
optimal market value predictions for team performance 
improvement and ensuring future financial benefits. Sofifa.
com is one of the most popular football-related data sources 
utilized for extracting a comprehensive dataset of FIFA19 
and real-world statistical sources. This study pursues three 
main objectives: first, to identify the most relevant features 
extracted for players across various popularity levels from 
five top-tier European leagues that influence their market 
value; second, to evaluate the prediction performance of 
advanced machine learning methods in forecasting the mar-
ket value of players with different popularity levels from 
these leagues; and third, to assess the effectiveness of vari-
ous variables in predicting market value using SHAP-based 
explainable machine learning techniques.

The compiled dataset went through detailed preprocess-
ing, feature selection, and engineering. Two filtering-based 
feature selection methods independently assigned scores 
to features, allowing the selection of a relevant subset (20 
features). Prediction outcomes related to Adaptive Boosting 
(ADA) and Extreme Gradient Boosting (XGB) base mod-
els and their hybrid versions (optimized with Ali Baba and 
Forty Thieves (AFT), Crystal Structure Algorithm (CSA), 

Henry Gas Solubility Optimization (HGSO), and Mayfly 
Optimization Algorithm (MOA)) reported and ensemble 
outcomes obtained as most reliable predicted values. XGAF 
was the best predictor among developed models with an 
RMSE value of €1.9 million misestimation. This error was 
less than 10% of average market values obtained for players 
of five well-known European leagues with 1 (less popular) to 
5 (superstars with the highest popularity) reputation indexes. 
Also, sensitivity analysis revealed that Reactions, Ball con-
trol, and Dribbling were the factors that affected predicted 
market values the most.

Football clubs can directly apply the predictions derived 
from the models to inform decision-making in various oper-
ational areas. For instance, the predicted market values of 
players can aid in transfer negotiations, allowing clubs to 
assess whether the asking price for a player is realistic based 
on their predicted value. Clubs could also utilize these pre-
dictions to determine whether investing in younger players, 
who may not have the same market value as superstars but 
possess significant growth potential, could yield long-term 
financial returns. Furthermore, knowing the predicted mar-
ket values can help clubs in contract renewal or termination 
decisions, ensuring they align with financial expectations. 
Additionally, clubs can leverage these insights to plan strate-
gic investments, such as focusing on acquiring players with 
specific skill sets that can generate increased ticket sales and 
enhance overall team performance.

While this study presents promising results, several limi-
tations should be acknowledged. First, the results of this 
research primarily focused on five well-known European 
leagues, which may not necessarily be representative of 
other global leagues. The transfer dynamics, player evalu-
ations, and economic factors in these leagues could differ 

Fig. 13   Explanation generated 
by SHAP visualized with force 
plot
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from those in smaller leagues or emerging football markets. 
As such, while the methods and findings could provide valu-
able insights for clubs within these top-tier leagues, further 
studies are needed to assess the applicability of the models 
in different league contexts, especially in terms of player 
valuation in markets with distinct economic conditions or 
player pool characteristics. Additionally, cross-validation 
methods and data balancing across reputation indices can 
be used in future studies to further validate the robustness 
of the models across a broader range of datasets and ensure 
the fairness of the predictions. Also, other global sensitiv-
ity methods and techniques are used to assess the sensitiv-
ity of models to input variations. These techniques include 
variance-based methods, such as Sobol’s indices and Morris 
screening, as well as Fourier-based approaches, like Fourier 
Amplitude Sensitivity Testing (FAST) and its extended ver-
sion, eFAST. These methods help identify the individual 
contributions of input factors and the interactions between 
them in influencing model outputs.
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