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Abstract: Background: Breast cancer is one of the most prevalent diseases threatening women's health today. In-
depth research on breast cancer (BC) pathogenesis and prevention and treatment methods are gradually receiving
attention. Chidamide is a novel histone deacetylase inhibitor (HDACI) that depresses the function of histone
deacetylase, consequently affecting the growth of BC cells through epigenetic modification. However, preclinical
and clinical studies show that chidamide is ineffective in long-term treatment. We demonstrated in previous ex-
periments that TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in BC cells and is significantly
less non-toxic to normal cells than chidamide. Therefore, in this study, we treated BC cells with chidamide and
TRAIL to explore a novel option to reduce the clinical toxicity through augmenting the sensitivity for BC cells.
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Methods and Results: Results from the MTT and cell viability assays indicated that the combination of chi-
damide and TRAIL in MCF-7 and MDA-MB-231 cells induced BC cell death, while maintaining a reduced con-
centration of chidamide. Autophagy assay and annexin V analysis showed that the autophagosome microtubule-
associated proteinllight chain3- II (LC3-1I) was abnormally increased and much more early and late phase of
apoptotic cells appeared during chidamide and TRAIL induction. Anti-tumor assays in a BC tumor xenograft
model displayed that the mixture of chidamide and TRAIL exhibited stronger effects on inhibiting tumor growth.
The data from real-time PCR and western blotting showed that the cytotoxic effect correlated with the expres-
sions of related apoptosis and autophagy factors.
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Conclusion: Our data are the first to demonstrate the synergistic effects of chidamide and TRAIL in BC cells,
specifically, the pharmacological effects on cell death induction. These results lay a solid experimental and theo-

retical basis to solve the clinical resistance of chidamide.
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1. INTRODUCTION

The status report on the global burden of cancer across 20
world regions estimated 18.1 million new cases and 9.6 million
cancer deaths in 2018. For both sexes combined, breast cancer (BC)
is the second most commonly diagnosed cancer (11.6% of the total
cases), with 2.1 million newly diagnosed female breast cancer cases
being reported in 2018. This accounts for almost one in four cancer
cases among women [1]. Approximately 60-70% of breast cancers
are estrogen receptor (ER) or progesterone receptor (PR) positive,
and 15-30% of cases have gene amplification and overexpression
of the human epidermal growth factor receptor 2 (HER2) proteins.
Additionally, 10-15% of breast cancers are called triple-negative
(TNBC), defined by the lack of ER and PR expression and HER2
amplification [2]. While chemotherapy has proven to be more
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effective in the control of aggressive and metastatic BC in recent
years, BC remains an incurable disease that has two obstacles to
achieving successful treatment in a majority of patients: (i) adverse
toxicities for healthy persons, and (ii) chemotherapy resistance and
relapse [3-6].

Researchers have found that epigenetic changes have more sig-
nificance in the occurrence and development of BC than was previ-
ously thought [7-9]. Histone acetylation, which regulates the ho-
meostasis between histone acetyltransferase and histone deacety-
lase, is one of the most important epigenetic modifications partici-
pating in breast carcinogenesis [10-11].

Chidamide is a novel and potential HDACi against the major
class I HDAC subtypes (HDACI, 2, 3), which are closely related to
tumorigenesis and disease progression. Chidamide has shown sig-
nificant anti-tumor effects in the treatment of leukemia, pancreatic
cancer, and colon cancer [12]. Also, chidamide was reported to be
used for breast cancer. The study revealed that chidamide repressed
the growth of triple-negative breast cancer cells, likely by the func-
tioning of miR-33a-5p [13]. However, chidamide alone used clini-
cally results in side effects such as anorexia, diarrhea, fatigue, nau-
sea, thrombocytopenia, and vomiting. Moreover, like other anti-
tumor drugs, chidamide also has a high cytotoxic effect and long-
term drug resistance. Consequently, clinicians prefer to use HDAC
inhibitors in combination with other drugs [14-16].

TRAIL (or Apo2L) can induce apoptosis in a variety of cells
[17-20]. Interestingly, one of the crucial properties of TRAIL is its
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selective cytotoxicity against cancer cells. Due to variations in drug
resistance, overcoming drug resistance is only possible by co-
administrating compounds with multiple functions that not only
target the cancer cells with selective cytotoxicity but also protect
healthy cells against chemo-toxicity. Therefore, in this study, we
selected BC ER-positive MCF-7 cells and triple-negative MDA-
MB-231 cells to investigate the pharmacological response of breast
cancer cells initiated by chidamide and TRAIL.

2. MATERIALS AND METHODS

2.1. Cell Lines and Reagents

Human MCF-7 and MDA-MB-231 cells were obtained from
American Type Culture Collection (ATCC) (Manassas, VA). Lei-
bovitz’s L-15 medium, RPMI-1640 medium, Fetal Bovine Serum
(FBS) and Penicillin-streptomycin Cocktails were purchased from
Thermo Scientific (Rockford, IL). Chidamide was supplied b%/
Chipscreen Biosciences Ltd. (Shenzhen, China). The CellTiter 96"
AQueous One Solution Cell Proliferation assay was from Promega
(Madison, MI). Muse Count & Viability kit and Muse Annexin V
kit were from Millipore (Darmstadt, Germany). High Pure RNA
Isolation kit and Transcriptor First Strand cDNA Synthesis kit were
given from Roche Diagnostics GmbH (Mannheim, Germany).
TRAIL powder, power SYBR Green PCR Master mix, RIPA Cell
Lysis buffer and BCA Protein Assay kit were from Life Technolo-
gies (Austin, TX). Polyclonal anti-Bid antibody, polyclonal anti-
ULK1 antibody, polyclonal anti-ATG4A antibody, polyclonal anti-
ATG?7 antibody, polyclonal anti-ATG9B antibody, polyclonal anti-
caspase 3 antibody, polyclonal anti-caspase 8 antibody, polyclonal
anti-CTSB antibody, polyclonal anti-LC3B antibody, polyclonal
TRAIL DRS antibody and polyclonal anti-f actin antibody were
obtained from Abcam Inc (Cambridge, MA). Protease inhibitor and
other chemicals were purchased from Sigma-Aldrich (St. Louis,
MO).

2.2. Cell culture

MCF-7 and MDA-MB-231 cells were grown in Leibovitz’s L-
15 medium or RPMI-1640 medium, respectively, with 15% fetal
bovine serum (FBS), 100 U/ml penicillin and 100 pg/ml streptomy-
cin. All the cells were maintained at 37°C with 5% CO, and 95%
humidity. The cells were seeded at the density of 1.0x10* cells/m]
in 96-well plate, 5.0x10° cells/ml in 6-well plate and 1.5x10’
cells/ml in 100 mm dish. The cells were grown to 70-80% conflu-
ence and starved for 24 hours in basal medium (with DMSO) with-
out FBS and treated with different compounds.

2.2.1. Chidamide Concentration-response Effects

MCF-7 and MDA-MB-231 cells were plated in 96-well plate
(5.0x10° cells/ml). After 24 hours starvation, the cells were treated
with different concentrations of chidamide (0, 0.5, 1, 2, 5, 10 and
20 uM) with or without TRAIL (100 ng/ml for MCF-7 and 50
ng/ml for MDA-MB-231) for 24 or 48 hours incubation. The same
concentrations of DMSO were added as a control. The CellTiter
96" AQueous One Solution Cell Proliferation assay (MTT) was
used and absorbance was measured at 490nm on a microplate
reader.

2.3. Cell Viability and Apoptosis Assay

MCF-7 and MDA-MB-231 cells were cultured in 96-well plate
and treated with different concentrations of chidamide with or
without TRAIL (100 ng/ml for MCF-7 and 50 ng/ml for MDA-MB-
231) as described previously. Muse Count & Viability reagent was
used to assess cell viability. 2x10° of harvested cells (50 pl cell
suspension) was added with 450 ul Count & Viability reagent. The
results were obtained with Muse Count & Viability software mod-
ule in Muse Cell Analyzer, and the statistics showed the concentra-
tions and percentages of viable and dead cells.
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For the apoptotic assay, 1x10° of cells were added with 100 pl
of Muse Annexin V and Dead Cell reagent for 20 min at room tem-
perature. Muse Cell Analyzer was determined the percentages of
the cells represented by alive, apoptosis and dead population.

2.4. Autophagosome Associated LC3-1I assay

MCF-7 and MDA-MB-231 cells were treated with chidamide
and TRAIL at a 4x10*/ml density in the 96-well plate for 48 hours,
and then the cells were stained with anti-LC3/Alexa Fluro® 555
conjugated antibody for 4 hours. The autophagosome associated
LC3-II (lipidated and sequestered in the autophagosomes) from
cytosolic LC3-I was achieved by using autophagy enabling solution
following the manufacturer’s recommendations. Trapped LC3-II
was measured using Muse Cell Analyzer, and statistical results
were shown by the corresponding histogram plot.

2.5. Establishment of Breast Cancer Tumor Xenograft Models

For the establishment of breast cancer tumor xenograft models,
the female nude mice were subcutaneously injected with 1 x 10
MDA-MB-231 cells suspended in 100 pL PBS. Length (L) and
width (W) of the tumor was determined by a vernier caliper. The
tumor volume (V) was calculated according to the equation: V=1L
x W2 /2.

Once the tumor reached 80 mm?, the tumor-bearing mice were
randomized into treatment groups. The mice were intravenously
administrated with chidamide or chidamide + TRAIL (12 mg/kg
chidamide and 0.2 mg/kg TRAIL) and saline as a negative control
for every two days (totally 12 injections). The tumor size and
bodyweight of the mice were monitored every 2 days. On day 23,
mice were sacrificed. The tumors were harvested and weighted.

2.6. cDNA Synthesis and Real-time PCR Analysis

Total RNA was extracted from MCF-7 and MDA-MB-231 cells
using the High Pure RNA Isolation kit according to the manufac-
turer’s instructions. RNA quantitation was performed via real-time
PCR. The total RNA was reverse-transcribed with the Transcriptor
First Strand ¢cDNA Synthesis kit and amplified by Power SYBR
Green PCR Master mix in an Applied Biosystems 7500 real-time
PCR system. The primers were designed by Primer 3 suit and li-
braries. The sequences of primers were in Table 1. Data normaliza-
tion was based on correcting all C, values for the average C; values
of the GAPDH gene present on the array. Three independent bio-
logical replicates were performed.

2.7. Western Blot Analysis

The MCF-7 and MDA-MB-231 cells pellet collected from 6-
well plate were incubated in RIPA buffer containing 0.1 mg/ml
protease inhibitor, ImM PMSF. The cellular lysate was rotated for
2 hours at 4°C followed by centrifugation for 10 minutes at 14,000
g at 4°C. Proteins were quantified using the BCA protein assay kit.
For immunoblotting, 20pg proteins were separated by SDS-
polyacrylamide gels electrophoresis and transferred to PVDF mem-
branes. Western blot analyses were performed using the antibodies
described above. The level of B-actin was used as loading controls.
Protein bands were detected using ECL Western blot substrate and
exposed on DNR MF-Chemi Bio-Imaging Systems.

2.8. Data analysis

All data in the text and figures are provided as means+S.D. The
results were analyzed by a one-way analysis of variance (ANOVA),
followed by Tukey Post hoc comparisons. All of the analyses were
performed using the Statistical Package for Social Science (SPSS)
software v22.0 (IBM, Armonk, NY). p <0.05 was considered sig-
nificant.
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3. RESULTS

3.1. Only a High Dose of Chidamide can Show the Cytotoxic
Effect on Breast Cancer Cells

Varied types of breast cancer cells had different drug sensitivi-
ties to chidamide treatment, MCF-7 cells were mildly sensitive to
chidamide treatment. After 24 hours of incubation, high concentra-
tions of chidamide (10-20 pM) inhibited the growth of MCF-7 cells
(Fig. 1A), and the half-maximal inhibitory concentration (1C50) of
chidamide after 48 hours was 20 pM (Fig. 1C). MDA-MB-231
cells were more sensitive to chidamide, with 5 pM chidamide visi-
bly inhibiting cell growth (Fig. 1B). However, the IC50 effect was
also 20 uM chidamide after 48 hours of treatment (Fig. 1D).
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To verify the cytotoxicity of chidamide in breast cancer cells,
we quantified cell viability with the Muse Count & viability reagent
on a Muse Cell Analyzer. After 24 hours, treatment with 0.5-5 uM
chidamide had little effect on MCF-7 and MDA-MB-231 cells. Cell
mortality increased from 3.8% to 5.8% in MCF-7 cells and from
4.5% to 7.2% in MDA-MB-231 cells compared to the controls.
Only high concentrations of chidamide (10 pM or 20 uM) exhibited
a pharmacological effect, as cell mortality rose more than 10% in
this group compared to controls (Fig. 2A and 3A). However, within
48 hours of treatment, the cytotoxic effects of the varying chi-
damide concentrations in breast cancer cells were significantly
different. A chidamide concentration of 20 uM exhibited the high-
est effect on cell death in both cell lines (Fig. 2B, 3B).

Table 1. The primers used for detecting factors are summarized in the table.
Gene Name Primer Orientation Sequence
Forward 5’-GTAAACTGGGGTCGCATTGT-3’
ULK1
Reverse 5’-TGGATCCAAGGCTCTAGGTG-3’
Forward 5’-TTTGGCTATGATGAGCAACG-3’
ATG3
Reverse 5’-GTGGCAGATGAGGGTGATTT-3’
Forward 5’-AAAAATGTGCCGTGTCCTTC-3’
ATG4A
Reverse 5’-GCAGAGGTGCCCTTACTCTG-3’
Forward 5’-GCAAGCCAGACAGGAAAAAG-3’
ATGS
Reverse 5’-GACCTTCAGTGGTCCGGTAA-3’
Forward 5’-GAACATGGTGCTGGTTTCCT-3’
ATG7
Reverse 5’-CATCCAGGGTACTGGGCTAA-3’
Forward 5’-CCTTGGGCAGTTCTTCTTTG-3’
ATG9B
Reverse 5’-CTTCCTGGTGCCTGGTACAT-3’
Forward 5’-GCATTGTAGGGCCAGTTGTT-3’
ATG10
Reverse 5’-GCTGGCCAGGTAAACTCTTG-3’
Forward 5’-AGGTCTGTAGTCGCGGAGAA-3’
ATG12
Reverse 5’-GTTCCCGGCTAGTCATTCAA-3’
Forward 5’-CCAGATCATCCCTGTGTGTG-3’
ATG16L2
Reverse 5’-CGAACAGCATTGACCTCAGA-3’
Forward 5’- AGGTTGAGAAAGGCGAGACA-3’
Beclin 1
Reverse 5’- GCTTTTGTCCACTGCTCCTC-3’
Forward 5’-AACGGGCTGTGTGAGAAAAC-3’
LC3B
Reverse 5’-AGTGAGGACTTTGGGTGTGG-3’
Forward 5’-GACGGCCTCCTCTCCTACTT-3’
Bax
Reverse 5’-CCTCCCAGAAAAATGCCATA-3’
Forward 5’-GGATGCCTTTGTGGAACTGT-3’
Bcl-2
Reverse 5’-AGCCTGCAGCTTTGTTTCAT-3’
Bid Forward 5’-GTGCAACACTGGTCTGCTGT-3’

(Table 1) Contd....
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Gene Name Primer Orientation Sequence
Reverse 5’-CCTCATGTTGTGGTCACAGG-3’
Forward 5’-ATTGGATCCCTTGGGCACCT-3’
Caspase 2
Reverse 5’-GGCAGGCATAGCCGCATATC-3’
Forward 5’-GGTTCATCCAGTCGCTTTGT-3’
Caspase 3
Reverse 5’-CGGTTAACCCGGGTAAGAAT-3’
Forward 5’-CACGTATGGTGGCTCATGTC-3’
Caspase 8
Reverse 5’-ACGGGGTCTTGTTCTGTCAC-3’
Forward 5’- AGCAGGCCCTCTTTCCATCC -3°
CTSB
Reverse 5’- GCAGGCAGCTTCAGGTCCTC -3’
Forward 5’-ATTTCAGCCTCTTTCCAGCA-3’
TRAIL DRS
Reverse 5’-CGGAACAAAACACACAATGC-3’
Forward 5’- TCTGCTTCCAGGTGACAGTG -3’
Nf-kB1 p65
Reverse 5’- ATCTTGAGCTCGGCAGTGTT -3’
Forward 5’-GAGTCAACGGATTTGGTCGT-3’
GAPDH
Reverse 5’-GACAAGCTTCCCGTTCTCAG-3’
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Fig. (1). The assay for chidamide concentration-response effects by MTT. MCF-7 or MDA-MB-231 cells were cultured for 24 or 48 hours in the presence
of chidamide at varying concentrations. The same concentrations of DMSO were used as control. The cell proliferation effect was measured by MTT assay. A.
MCEF-7 cells treated with chidamide (0-20 uM) for 24 hours. B. MDA-MB-231 cells treated with chidamide (0-20 uM) for 24 hours. C. MCF-7 cells treated
with chidamide (020 uM) for 48 hours. D. MDA-MB-231 cells treated with chidamide (020 uM) for 48 hours. means+S.D. for three independent experi-
ments and analyzed using SPSS software, chidamide versus Basal at p<0.05.
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Fig. (2). Cell Viability assay by Muse Cell Analyzer in MCF-7 cells. MCF-7 cells were treated with different concentrations of chidamide (0-20 uM), as
described previously for 24 or 48 hours. Muse Count & Viability reagent was used to assess cell viability. A. Cells treated for 24 hours. B. Cells treated for 48
hours. The statistics showed the concentrations and percentages of viable and dead cells.
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MDA-MB-231 Cells
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Fig. (3). Cell Viability assay by Muse Cell Analyzer in MDA-MB-231 cells. MDA-MB-231 cells were treated with different concentrations of chidamide (0—
20 uM), as described previously for 24 or 48 hours. Muse Count & Viability reagent was used to assess cell viability. A. Cells treated for 24 hours. B. Cells
treated for 48 hours. The statistics showed the concentrations and percentages of viable and dead cells.
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Fig. (4). The effect of chidamide and TRAIL combination on cell viability and cell proliferation of breast cancer cells. Breast cells were plated in 96-well plate
and different concentrations of chidamide (0-20 uM) were treated with TRAIL (100 ng/ml for MCF-7 and 50 ng/ml for MDA-MB-231) for 48 hours. The cell
proliferation effects of chidamide and TRAIL treatment were measured by MTT and Muse cell viability assay. A. MTT assay for chidamide (0-20 pM) with
TRAIL (100 ng/ml) in MCF-7 cells. B. Muse cell viability assay for chidamide (0-20 uM) with TRAIL (100 ng/ml) in MCF-7 cells. C. MTT assay for chi-
damide (0-20 pM) with TRAIL (50 ng/ml) in MDA-MB-231 cells. D. Muse cell viability assay for chidamide (0-20 pM) with TRAIL (50 ng/ml) in MDA-
MB-231 cells. mean+S.D. for three independent experiments, chidamide and TRAIL versus TRAIL at p<0.05.

Combining the above results, we verified that 20 pM chidamide
after 48 hours of incubation significantly inhibited growth and in-
duced cell death in MCF-7 and MDA-MB-231 breast cancer cells.

3.2. Combination of Chidamide and TRAIL Significantly In-
duced Breast Cancer Cell Death

Our previous experimental results showed that breast cancer
cell lines treated with TRAIL show varying sensitivity [21]. There-
fore, the breast cancer cells were incubated with two different con-
centrations of TRAIL (100 ng/ml for MCF-7 and 50 ng/ml for
MDA-MB-231) with increasing concentrations of chidamide
(1020 pM) for 48 hours. We then used the MTT and Muse Cell
Analyzer to analyze breast cancer cell viability. The data in Fig. (4)
indicate that the addition of TRAIL significantly reduced the effec-
tive dose of chidamide, with 10 pM of chidamide markedly display-
ing cytotoxic effects on MCF-7 and MDA-MB-231 cells co-treated
with TRAIL.

3.3. Anti-tumor Effects in a Xenograft Breast Cancer Tumor
Model

The therapeutic potential of chidamide and TRAIL was evalu-
ated in MDA-MB-231 tumor-bearing nude mice. Compared with

the saline negative control, tumor growth was significantly inhib-
ited after successive treatment with TRAIL alone or with chi-
damide. The mixture of chidamide and TRAIL exhibited stronger
effects on tumor growth inhibition compared to chidamide alone,
potentially owing to a synergistic anti-tumor effect (Fig. SA and
5B).

3.4. Combination of Chidamide and TRAIL Generated a Large
Number of Autophagosome in BC Cells

We incubated chidamide and TRAIL with breast cancer cells
for 48 hours and used the Muse Autophagy Assay to measure the
mean autophagy intensity value, which was represented the produc-
ing degree of the autophagosome. As shown in Fig. (6A and 6B),
the effect of chidamide was similar in both MDA-MB-231 and
MCF-7 cells; the amount of trapped autophagosome increased with
chidamide induction. However, the pharmacological effects of
TRAIL were more significant in MDA-MB-231 cells than in MCF-
7 cells. TRAIL alone did not affect the autophagosome formation in
MCF-7 cells, but in MDA-MB-231 cells, the mean autophagy in-
tensity value more than doubled compared with the control. The co-
treatment of chidamide and TRAIL significantly increased the
amount of autophagosome in both of the cells.
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Fig. (5). Anti-tumor efficacy on breast cancer tumor xenograft model. (A) The representative images of the breast cancer xenograft tumors collected from
the mice after treatment with different formulations on day 23. (B) Changes in the body weights of MDA-MB-231 nude mice receiving intravenous injection
of different formulations. ** TRAIL versus saline group (n=3) at p<0.05. *** chidamide and TRAIL combination versus saline group (n=3).

Next, we estimated the apoptosis induction of chidamide and
TRAIL in breast cancer cells. Results showed that the apoptotic
effect was significantly brought out by TRAIL alone in both of the
cells. The function of chidamide was dependent on cell selective. It
had a slight effect on MDA-MB-231 cells; however, chidamide
obviously enhanced the late apoptosis rate and the number of ne-
crotic cells in MCF-7 cells. Co-treatment undoubtedly activated the
early and late apoptosis rate and necrosis rate in MCF-7 and MDA-
MB-231 cells (Fig. 6C and 6D).

3.5. The Pharmacological Effects of Chidamide and TRAIL
were Associated with High Transcriptional Activity of Genes
Related to Apoptosis and Autophagy

We used qPCR to screen the changes in mRNA levels of vari-
ous genes that participated in apoptosis and autophagy as
implementers or regulators. As seen in Fig. (7), change in ATGs
mRNA expression following chidamide and TRAIL treatment var-
ied, and the amounts of ULK1 (ATG1A), ATG4A and ATGY9B
were significantly increased in both cell lines (Fig. 7A, B, H, K, L,
R). ATGS and ATG7 were expressed only in MCF-7 cells (Fig. 7G,
C) and no significant changes were observed in MDA-MB-231
cells (Fig. 7Q, M). Also, other ATGs such as ATG3, ATGI10,
ATG12, and ATG16L2 did not distinctly change with the treatment
of chidamide and TRAIL (Fig. 7D, E, F, I, N, O, P, S). Only Beclin
1, an important factor in autophagy, was induced in MDA-MB-231
cells following treatment with TRAIL alone; it was not stimulated
with any compounds in MCF-7 cells (Fig. 7J, T).

For apoptosis assay, the main functions for drug treatment were
reflected in the mRNA changes of Bid, caspase 3 and caspase 8.
The effect of TRAIL on both breast cancer cell lines was more
obvious than that of chidamide. Chidamide has little stimulation on
Bid, caspase 3 and caspase 8, but TRAIL could activate the expres-
sions of related genes at an unusual level either alone or in combi-
nation (Fig. 8B, C, H, L, M, R). In addition, we also observed that
the changes of CTSB and TRAIL DRS were also apparent with
drug treatment (Fig. 8D, I, N, S).

Finally, the protein analysis confirmed that the expression of
ATG4A and LC3B in MCF-7 and MDA-MB-231 cells was also
highly enhanced with the induction of chidamide and TRAIL, ac-
companied by a significant increase in Bid, caspase 3 and caspase
8. Furthermore, CTSB and TRAIL DRS, which were important
targets of chidamide and TRAIL, were also highly expressed (Fig.
9).

4. DISCUSSION

The problem of drug resistance of clinical anti-cancer drugs has
been accompanied by the whole process of treatment [22, 23]. As a
new generation of HDACi drugs, chidamide has the greatest advan-
tage that it has better low-toxicity than the lower generation of
HDAC: drugs such as trichostatin A (TSA) and vorinostat (SAHA)
[24-25]. For example, a clinical study was performed to evaluate
the safety, pharmacokinetics, and preliminary efficacy of chidamide
in combination with exemestane in postmenopausal women with
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Fig. (6). The autophagy and apoptosis assay induction by chidamide and TRAIL. MCF-7 or MDA-MB-231 cells were incubated with chidamide and
TRAIL in 96-well plate for 48 hours described as before. Autophagy assay was used to measure the amount of autophagosome-associated LC3-II with com-
pounds. The values of trapped LC3-II were shown by the corresponding histogram plot. The apoptotic assay was used to determine the percentages of the cells
represented by alive, apoptosis and dead population. A. Autophagy assay for MCF-7 cells. B. Autophagy assay for MDA-MB-231 cells. C. Apoptosis assay for
MCEF-7 cells. D. Apoptosis assay for MDA-MB-231 cells.
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Fig. (7). The effects of chidamide and TRAIL combination on the mRNA expressions of autophagy-related ATGs in breast cancer cells. Breast cells were
plated in 96-well plate and 10 pM chidamide was treated with TRAIL (100 ng/ml for MCF-7 and 50 ng/ml for MDA-MB-231) for 48 hours. QPCR was used to
determine the changes in mRNA levels of various ATGs induction by chidamide and TRAIL treatment in MCF-7 (Fig. 7A-7J) and MDA-MB-231 (Fig. 7K-
7T) cells. means+S.D. for three independent experiments and analyzed using SPSS software, * chidamide versus Basal at p<0.05. ** TRAIL versus Basal at
p<0.05. *** chidamide and TRAIL combination versus chidamide at p<0.05.
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Fig. (8). The effects of chidamide and TRAIL combination on the mRNA expressions of apoptosis-related ATGs in breast cancer cells. Breast cells were
treated with chidamide and TRAIL described as before. QPCR was used to determine the changes in mRNA levels of various factors in MCF-7 (Fig. 8A-8J)
and MDA-MB-231 (Fig. 8K-8T) cells. means+S.D. for three independent experiments and analyzed using SPSS software, * chidamide versus Basal at p<0.05.
** TRAIL versus Basal at p<0.05. *** chidamide and TRAIL combination versus chidamide at p<0.05.

HR+ and HER2-negative advanced breast cancer (ABC) that recur-
rent or progressed to at least one endocrine therapy [26]. But it also
has the shortcomings and deficiencies of high dosage and potential
drug resistance [27]. This was also verified in our experiment. The
cytotoxic effect of a low dose of chidamide on breast cancer cells
was not very significant. It needed to increase the dose up to 20 pm
for 48 hours duration to perform the full cytotoxic effect. Therefore,

it is essential to search for compatibility with other drugs with the
aim of deep optimizing the efficacy of chidamide. Based on this
idea, we found that TRAIL may be a more suitable candidate. Re-
cently, it was reported that a promoter SNP of TRAIL functionally
modulates the gene expression, and they advise considering the -
716 TRAIL SNP status in patients undergoing TRAIL therapy.
High TRAIL expressing individuals with -716 CC genotype are at a
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Fig. (9). The effects of chidamide and TRAIL combination on the protein expression of related factors. Breast cells were plated in 96-well plate and 10
UM chidamide was treated with TRAIL (100 ng/ml for MCF-7 and 50 ng/ml for MDA-MB-231) for 48 hours. Western blot analysis was used to determine the
changes in protein levels of various factors. A. MCF-7 cells. B. MDA-MB-231 cells.

greater risk of developing tumor. The findings indicated that ge-
netic variants of TRAIL at position 1595 in exon 5 might be associ-
ated with the progression of breast cancer [28]. Combined with our
previous experiments, it showed that TRAIL, as a strong inducer,
can induce breast cancer apoptosis, and it had a selective cytotoxic
effect that was no obvious toxic reaction to normal cells [29]. In
this experiment, when TRAIL and chidamide were combined to
treat breast cancer cells, we found that their effect on cells was
obviously better than that of chidamide alone, and the dosage of
chidamide reaching or close to IC50 was also reduced from 20 uM
to 10 uM.

At present, it is generally accepted that apoptosis and autophagy
function on cell survival in two different aspects. Autophagy is a
physiological reaction for cells under normal conditions, which is
mainly characterized by autophagic lysosomes. Its contribution to
cells is more for efficient recovery and utilization of all necessary
components [30-32]. But apoptosis is a kind of active cell death
process which is characterized by chromatin condensation of the
nucleus [33, 34]. Both of them can induce cell death, but autophagy
induced cell death is more a mechanism of cell self-protection, and
cell apoptosis is the result of cell response to external stimulation
such as chemical drugs [35, 36]. When we analyzed the apoptosis
and autophagy effects of chidamide and TRAIL on breast cancer
cells, we found that different types of cells had different responses
to the drugs. For ER+ breast cancer MCF-7 cells, chidamide could
strongly activate the apoptotic and autophagic responses, in which
the ratio of living cells was greatly reduced, the ratios of early, late
apoptosis and necrosis cells were markedly increased. For MDA-
MB-231 cells, the role of TRAIL seemed to be more powerful than
that of chidamide. Chidamide only induces a certain degree of
autophagy and had a general effect on apoptosis induction.

When we determined the changes of some factors associated
with apoptosis and autophagy, we found that the expression levels
of ATG4A and ATGY9B were raised following treatment with
TRAIL or chidamide. The ATG4 family (ATG4A, 4B, 4C, 4D) is

critical to the biological formation of autophagosomes [37, 38]. The
ATG4-catalyzed delipidation reaction is also necessary for the fu-
sion of autophagosomes and lysosomes to form autophagosomes
[39—-41]. Moreover, the essential role of ATG9B is also required for
the formation of autophagosomes in mammalian cells [42]. There-
fore, we implied that with drug treatment, a series of autophagy-
related protein (ATG) molecules are involved in the formation of
autophagosomes and autophagic lysosomes.

In addition, we found that the expressions of Bid, caspase-3 and
caspase-8, which are closely related to apoptosis [43-45], were
active in the breast cancer cells treated with chidamide and TRAIL.
In MCF-7 and MDA-MB-231 cells, the expression of Bid was sig-
nificantly increased both in TRAIL alone and in combination with
chidamide, while the mRNA expressions of caspase-3 and caspase-
8, which play important roles in apoptosis signal transduction, were
enlarged in co-administration. However, the expressions of Bax and
Bcl-2, which are the classical apoptosis markers [46, 47], did not
change strongly.

It should be noted that chidamide alone had no effect on the
expressions of caspases. Chidamide mainly initiated autophagic
effect by activating autophagy-related factors such as ATGA4A,
ATGY9B and LC3B, to promote the formation and maturation of
autophagy vesicles, and finally to wrap cathepsin B (CTSB) for
intracellular material transport. TRAIL, on the other hand, can acti-
vate apoptosis through its specific receptor, TRAIL DRS (TRAIL
Death Receptor 5), and induce breast cancer cell death through
caspase 3.

Of course, we also noticed that the transport of CTSB by vesi-
cles was also enormously risen. CTSB is a corporate effector of
apoptosis and autophagy [48, 49]. It is an important component of
lysosomes and the main enveloping protease of autophagic
lysosomes. Moreover, it is still an important regulatory factor in the
apoptosis pathway. TRAIL can transmit signals to CTSB through
TRAIL DRS. It has been reported that CTSB can activate the ex-
pression of Bid. Bid is activated by the cleavage of the carboxyl
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domain under caspase 8 to form tBID. The transfer of tBid to mito-
chondria leads to the release of cytochrome C to induce apoptosis
[50]. Therefore, there may be a transduction chain of TRAIL DRS-
CTSB-Bid in the pharmacological action of chidamide and TRAIL.
The chain initiates the occurrence and intensity of apoptosis
through the interaction with caspase 3 and caspase 8 (Fig. 10).

Interestingly, combined with the experiment of breast cancer
tumor xenograft (Fig. 5), we also suggested that TRAIL should be
paid more attention to its anti-cancer effect, which has potential
clinical application value for triple-negative breast cancer, a malig-
nant type with high recurrence, death and metastasis [51, 52].

CONCLUSION

In summary, we report an original study revealing the pharma-
cological effects of chidamide and TRAIL in BC cells. This chi-
damide and TRAIL combination may be used as a novel drug strat-
egy in the future.
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